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An Infinite Proper Subset of Regular Languages as
a State Change Based Coupling of Finite Automata

Ahmet Cevik, and Krevren Kil¢

Abstract—We introduce an infinite proper subset of regular characterization. For example, some functions for specific
languages (RL), so called the state change couple of finite problems that can serve as a model to algorithmic energy

automata (FA). The execution time state change behavior of . : ; ; ;
FA is shown 1o be modelled asstate automata (SA). For our complexity of algorithms are introduced in [9], [10] to which

purpose, we define a unary operator whose domain is FA and W& refer the rea(.jer.for further research regarding algorithmic
range is SA. The new language class obtained by applying €nergy complexity in a broader sense.

the operator on FA is called state change languages (SCL). In this paper, we propose a simple operator which shall
We show that SCL is closed under union, but not under e call theC operatorthat enables model level state change

complementation, homomorphism and inverse homomorphism. o4 4cterization of its possible implementations. We study
We also investigate the properties of SA with empty string

transitions. The work given here can be considered as a basis for & POSSible “coupled” language class defined by the range
analyzing the language class properties of the runtime attributes Of the operator. Here, we restrict ourselves to a unary

of basic computational models. mapping that operates on state change behavior of finite
Index Terms—Run-time attributes, state change languages, dutomata. However, the idea can be extended to higher level
regular languages, finite automata. abstract machines in the hierarchy in which state change is

the common core idea. As a consequence, we identify a
new language class what we calfate change languages
(SCL), coupled to RL. Then, we investigate this coupled
ODELS of computation are mathematical abstractiod@nguage class and its closure properties. Note that the
of computational devices. They are usually used &ffort can clearly be extended to alternative computational
study the limits of computation. The same models, on twaodels by defining suitable operators in order to observe the
other hand, can also be used to elaborate on related runtigfgresponding language classes.
attributes of computational devices. Specificadhgte change ~ The remainder of the paper has the following organization.
is such an attribute that can be associated with an executldnSection 2, we define the state change operator, and the
of any abstract computing model. language class generated by this. In the same section, we
State change characterization realized by working @Hve some basic properties of the operator and show that
abstract computational models rather than on their impl8CL is a proper subset of RL. In Section 3, we examine the
mentations gives us: (i) an idea about state change relapsgperties of SCL including a discussion on determinism.
limits of their implementations under certain conditions (iipection 4 is devoted to the study of SA witkransitions.
an abstraction to investigate possible “coupled” classes bfe last section includes conclusions and future work.
languages that can be identified through the very basic
idea of state changes that occur during the execution ¢f. THE C OPERATOR AND STATE CHANGE LANGUAGES
an abstract machine. This in turn may lead to identificatio
of new abstract machines. State change based formalization
of abstract machines has been investigated in [1]. RelatedFirst we give the notation. We use standard set theoretical
to the item (ii), search for not coupled but robust class@perationsc, C, N, U and — respectively for subset, proper
of regular languages (RL) is known to be a problem cfubset, intersection, union and set difference. We denote the
theory of computing, automata theory, formal verification arempty set byf). For a setA, we denote power set, i.e. the
regular model checking [2], [3]. In [2], for example, a robusset of all subsets, ofti by P(A4). The cardinality of a set
decidable class of RL recognized by finite ordered monoidd, is denoted byl A|. For an alphabekE, we denote the set
called W, has been proposed. Other example subclassesobfall finite strings overX by X*. Similarly, for a natural
RL identified due to the “negative result that RL cannot beumberk, % denotes the set of all strings of lengthover
inferred from positive data only” [4] include: k-reversibleX. We denote the empty string by' For a languagel,
languages [5], strictly RL [6], regular code languages [#ye denote the complement d&f by L = ¥* — L. We use
and uniquely terminating RL [8]. Also note that the workowercase letters such asw, v for strings and we use, b
given here should not be confused with algorithmic enerdgr symbols in the alphabet. For any two languageand
complexity as the latter must take Turing machines asd, we denote the language concatenatiorLioyl/ = {vw :
basis and has been studied for other reasons rather thad L andw € M}.
studying the language properties admitted by the state chang®efinition 1: A finite automaton(FA) is a 5-tuple

(@,%,9,q, F), where
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§:Q x X U{e} = P(Q) is the transition function, transitions are preserved. Sindeand B are topologically the
qo € Q is the start state, and same in this sense, we can say tfias topology preserving.
F C @ is the set of final states. It is also easy to see thatis idempotent, i.eC(C(A)) =
For an automatord, we denote the language of by C(A) for any A. SinceC is surjective, it is not invertible. The
L(A). output automaton describes the state change based coupled

Clearly, the total number of state changes is bounded Aytomaton description of a given FA under consideration.
the length of the computation. So finding the minimum totalhe rest of the paper will be devoted to the study of the
number of state changes for an accepting computationlasiguage of this description.
nothing but finding the shortest path from the start state toLet ¥ and I" be two alphabets. Recall that a function

any of the final states. f:X* = I'* is ahomomorphisnif f(e) = € and f(w) =
f@w) f(v) for all w,u,v € ¥* such thatw = wv. One can
B. State Automata and State Change Operator apply a homomorphism to a language by applying it to every

Definition 2: A state automatofSA) (Q, ¥, ', go, F) is string in the language. We observe that ¢heperator allows
an FA with the following restrictions: o homomorphism of languages only in some cases. To see this
, : . ' let A = (Qa,%4,64,q0,,F4) be an FA without empty

(i) ¥ ={0,1} is a restricted two symbol alphabet, . o A A A0 )

(ii) transition function includes transition rules either o tring trqn3|t|ons such thaﬂ(A) 7 (Z)'* Itis easy t*o see that
the form here exists a homomqrphlsm : 3% — {0,1}* defined
5'(p,0) = {p} such thaty € Q, or over L(A) and_L(C(A)) iff for eacha € ¥4, da(p,a) = R
5,(p’1) — R such thatk € P(Q — {p}), or both holds when eitherR = {p} or Rn {p} = 0, for all
o ' ‘. p € Qa. The general case fails however. Using Example

Definition 3: The state change operator, denoted Byis

o NG FA — SA h th ) FA 1 as a counter argument, we show that it is not always the
a surjective mapping : - such that, given an case that homomorphism of languages exists. Suppose for
A=(Qa,X4,04,q0,,Fa), it produces an SB =C(A) =

a contradiction that some homomorphigmexists so that
(@B, 5,05, 405, F'p) such thatQp = Qa, X5 = {0, 1}, \yheneverw € £(A), then h(w) = h(u)h(v) € L(C(A)),
= Fp = Fy4, and for each 4(p, a) = R, we define ;
gOB *qﬁAh B = =4, AP, @) = It where w,u,v € ¥* and w = wv. Consider the case
Bifsg‘;]% o Sp(p.1) = B w = bb € L(A). Then, h(bb) = h(b)h(b) must be in
’ ’ ’ L(C(A)). However, if we look at Example 14b gets the

therwi ) ={p}, dp(p,1) = R— . .
as tr?e ﬁ(ravyvlstfan5|t|on3r(lﬁég) {p} onlp. 1) = F—{p} value 10 for £(C(A)). This means that we cannot assign a

Simply, theC operator modifies the transition function ofUnique value for.
a given FA by mapping its input symbols to either 0 or 1 We shall now investigate the language class defined by

according to the description given above. The transformati

takesO(|3||Q[2) steps. Defmmon 4: A language is astate change language
Example 1:Let A = ({go,q1},{a,b} .3, q0, {g1}) be an (SCL) if some SA recognizes it.
FA such thaty is defined as in Figure 1. Theorem 1:5CL C RL. _
Proof: First we have to show that every language in SCL
a b is also in RL. This is obvious since every SA is an FA. Next,
we have to show that there exists some regular expression
@ b E such thatL(FE) # L(B) for any SA B. Suppose the
start 90 @ contrary. As a counter example, consider the langugge

and suppose thgt0} is in SCL. Then, there must exist an
SA B such thatZ(B) = {0}. In this caseB must contain
a transition rule of the formj(p,0) = R — {p} which is
necessary for the generation {}, whereR C @ andQ is
the set of states aB. But then this contradicts the definition

Notice that in A, state change occurs either when thef SA that it cannot include such transitions. u
current state igo and the input i$, or when the current state  In fact, when we think ofstate expressionslefining an
is ¢; and the input is.. Then, by applying th€ operator,A  SA, in the same manner regular expressions defining an FA,
is transformed by relabeling its input symbols. The transitiof€ see that any state expression is a regular expression but

Fig. 1. A finite automatorA.

diagram of the new automaton is given in Figure 2. not the other direction does not always hold. It is easy to see
that 0¥ cannot be included in any kind of state expression
0 0 for any k > 0.
@ 1 [1l. CLOSUREPROPERTIES OFSTATE CHANGE
start do @ LANGUAGES

It is known that RL is closed under union, intersection,
1 complement, difference, kleene star, concatenation, homo-

morphism, and inverse homomorphism [12], [11]. SCL is
Fig. 2. State automatoB = C(A). not closed under homomorpism and inverse homomorphism.

In fact, the alphabet change is where the problem arises. If
The output automato has a fixed alphabef0,1}. In  we letT" be the alphabet of an FA such th&t > 2, then we
the transformation, the number of states and the numberhafve a problem of representing state changes. We only have
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two symbols in SCL. The third symbol is undefined in SCL IV. STATE AUTOMATA WITH e-TRANSITIONS
and this results in any such string, containing three or more Forbidding transitions with empty string does put a re-
different symbols, not being able to be interpreted in the Syiction on constructions for proving closure properties. It
since the range of theé operator is binary. For the similar hayyrally arises the question whether or not the empty string
reason, SCL is not closed under inverse homomorphi§q formal language theory provides us a basis to construct
h: " — X, for any " such that|l'| > 2. We next Show the required automata to satisfy more closure properties.
that SCL is closed under union. Allowing empty string transitions in SA indeed makes things
Theorem 2:If L and M are in SCL, then so i&. UM.  egsjer and gives more closure properties. If we leave each
Proof: The proof is standard which is by produciepsilon transition as it is and so add to the definition of
construction of two SA in this case. I and M are in the ¢ operator an appropriate rule, then some standard
SCL, then there exist two SA; = (Q1,%,01,q1,F1) constructions lead us to have richer closure properties. Next,
and Ay = (Q2,%,02,q2, F>) that recognizeL and M, \ye shall investigate the properties of SA when one allows
respectively. ForL U M, we construct an SM such that transitions with the empty string, i.estransitions.
L(A) = LU M. The states of4 are of the form(Q.,Q,) By definition, SA do not include-transitions. On one
such that@, € P(Q1) andQ, € P(Q2). Furthermore, the hand, allowing theC operator to interpret the empty string
transition function ofA will be of the formd4 : Q1 X |ike other inputs might sound obscure since there would be
Q2 x ¥ = P(Q1) x P(Q2). The start state ofl is the pair “jnternal” state changes viatransitions. On the other hand,
(q1,42), i.e. the start states of; and A,. A should accept _transitions are independent from the input string and this
if and only if either of the automata accepts. Therefore, thyes not violate the notion of state change of an FA for
final states ofA consist of pairgQ. s, Qyy) such that either g given particular input string. This motivates us to use
Qup € P(Q)NFL # 0 or Qyy € P(Q2) NI # 0, or both.  transitions explicitly in state automata. In this case, we leave
So, we defined = (Q xQy, %, 04, (q1,¢2), Qzr X Qyys) @Nd  eache-transition in a given FA as it is. The definition of state
6a((p,q),a) = (61(p,a),d2(g,a)). Thus,L(A) = LUM. B change operator should be therefore extended and adapted for
Another fact about SCL is that it is not closed undefiransitions.
complementation unlike RL. Suppose the contrary. Let us Definition 6: State change operator witktransitions, de-
again consider the language = {1}. Clearly, L is in noted byC,, is a surjectiorC, : FA — SA such that, given
SCL. Then, for instance, it must be the case i € L. anFEAA = (Qa,%4,04,q0,,Fa), it produces an SA witl-

But any SA which accepts this string must also acceptransitionsB = C.(4) = (QB,%B,08,q9,, Fz) such that,
which contradicts the fact that ¢ L. So unlike RL, we @, = Q,, S5 = {0,1}, qo, = qo,, Fp = Fa, and for

conclude that SCL is not closed under complementatiogachs 4 (p,a) = R

homomorphism and inverse homomorphism. Sp(p,e) =R if (a=e¢),
Still further, many languages recognized by SA cannotbe  §z(p,1) = R if (a#¢)and(p ¢ R),
recognized by deterministic state automata (DSA). First, let  §5(p,0) = {p} and

us give the following definition. dp(p,1) = R — {p} if (a+#¢) and(p € R).

Definition 5: An FA A = (Q,%,4,q, F) is said to be  Let us calle-SCL the set of languages recognized by SA
incompleteif §(¢,a) = 0 for someq € Q anda € X. with e-transitions. Clearly, every language in SCL is also in
OtherwiseA is calledcomplete. e-SCL. Usinge-transitions in SA gives modularity in proving

We argue that there is no general conversion from S#osure properties. Many of them become trivial to construct.
to DSA preserving the language hence observe that $Mion and product proofs are standard in this case. Other
recognize more languages than DSA. For this we show tilhan those two, we give the following closure properties.
there exists a language in SCL which cannot be recognizédfact, notice that it is sufficient to just have SCL in the
by any DSA. First let us demonstrate that the applicatidtypothesis.
of the standard non-deterministic FA to deterministic FA Theorem 3:If L and M are in SCL, thenL o M is in
conversion within the domain of SA fails. A simple case-SCL.
is the languagd. = {1}. Although L can be recognized by Proof: Let S;, = (Qi1,{0,1}, 6, qis, F7) and letSy, =
an SA whosé consists of a single transitiof{go, 1) = {q;} (@m,1{0,1},0m,qms, F'm) be the SA for L and M, re-
such thatg is the start state ang} is the final state, this SA spectively. The standard construction for the concatenation
is incomplete. Since all deterministic automata are comple®, RL applies here. We construct an S8y = (Q; U
the SA recognizing{1} must be non-deterministic. If we Qm,{0,1},0n, @5, Frn), Where {0} U {6,,} € {0}, with
define this SA on all arguments to make it complete, then @dlditionale-transitionss,, (qis, €) = {qm.} for eachq;; € .
states must self-loop with a 0 transition which would directly

M
coupled FA, sayA, which, when applied to thé' operator, @ T '
gives an automaton having the langudgelf we apply the
note that given two FA with different languages yet same As shown in Figure 3, the resulting automaton is an SA
topology, their coupled SA will be the same. with an e-transition. The input string will be accepted if and

S,

.
" ———

',---i‘i--\

| S NS

change the language of the automaton. We shall also show L
that the conversion fails from the domain of FA. Take the
same languagd.. Then we observe that there must be a
FA to deterministic FA conversion oA then this will change Fig. 3. State automatofiy; with an e-transition recognizing the language
its topology. But then the obtained deterministic FA will b‘i%M. N ‘ gnizing guag
coupled with an SA whose language is different tiamlso
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only if it has an accepting computation &y which clearly of the actual model. It would be an interesting future work

has the languagé o M.

Theorem 4:If L is in SCL, thenL* is in e-SCL.

to investigate such coupled language classification for more
complex models of computation. For this, one should first

Proof: Let S = (Q,X,4,q0, F) be an SA such that introduce a general metric for characterizing the state change

L(S) = L, whereF = {gy,,...

,qr,} for somei > 1. We of the desired higher model and then observe its language

construct an SA witk-transitionsS” = (Q’,%,4', ¢, F'), as class properties admitted by the metric. Finally, one may

shown in Figure 4 such th&)) = QU {¢.} and F’ = {¢.}.

then observe how it differs from the one obtained here. Lan-

To obtaind’ so that{é} C {d§’}, we add the transition rules guage classification within the state change characteristic of

computational models and investigating a possible hierarchy

-
-
e

] [
/

(2]

Fig. 4. State automatof’ recognizing the languageC(S))*. [3]

5/(qg76) = {(Jo} and 5I(qfi7€) = {qg} for every qr € [4]
F. Then, the resulting automaton is clearly an SA with
transitions such thaf(S’) = L*. m Dl

Letw = ajas ... a, be a string. Then, the reversal ©fis 6]
wf = anan_1 . ..a1. For example ifw = 00110, thenw® =
01100. We denote the reversal of a languafeby L? =
{w| w e L}. Reversal of a transition is simply switching
the direction.

Theorem 5:1f L is in SCL, then so i< %. (8]
Proof: Let A = (Q,%,0,q0, F) be an SA such that
L(A) = L. We defineA? = (Q,%,6%,s,q) recognizing [9]

L such that we define a new start statgith ane-transition

to all states inF". Note that we makey as the only accepting [10]
state of A%, Since{p} € 6%(q,a) iff {q} € d(p,a), we have
that L(AFR) = (L(A))E = LE. [ ]

(7]

[11]

V. CONCLUSIONS (12]

Every state change (or no state change) in an FA is coded
as a letter in its coupled SA. We investigate the properties of
their state change characteristics through the language class
it defines. SCL can be considered as a “coupled” language
defined (or coded) by the state transitions of an FA in its
computation. The obtained language class has been shown
to be closed under union but not under complementation
and homomorphism and inverse homomorphism. One may
define a language morphism between RL and SCL but only
under certain conditions. It has been shown that DSA are less
powerful in a sense of language recognition when compared
to SA. The properties of SA witk-transitions has been inves-
tigated and it has been observed that allowing such transitions
gives richer properties with convenient constructions.

From another perspective, introducing tBeoperator re-
veals the fact that there exists at least one interpretation
related with the syntax of FA. This interpretation can be
taken as the state change attribute.

An analysis through the state change characteristic gives
an idea about the relationship between the actual model and
its runtime behavior. In our case, the language of this behavor
has been shown to be a proper subclass of the language
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- indeed would be an interesting study in its own right. A more
interesting study could be done for those abstract models of
computation that are not well-defined physically, for example
guantum computational models, in order to have an idea
about their state change behavior on abstract level.
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