
An Infinite Proper Subset of Regular Languages as
a State Change Based Coupling of Finite Automata
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Abstract—We introduce an infinite proper subset of regular
languages (RL), so called the state change couple of finite
automata (FA). The execution time state change behavior of
FA is shown to be modelled asstate automata (SA). For our
purpose, we define a unary operator whose domain is FA and
range is SA. The new language class obtained by applying
the operator on FA is called state change languages (SCL).
We show that SCL is closed under union, but not under
complementation, homomorphism and inverse homomorphism.
We also investigate the properties of SA with empty string
transitions. The work given here can be considered as a basis for
analyzing the language class properties of the runtime attributes
of basic computational models.

Index Terms—Run-time attributes, state change languages,
regular languages, finite automata.

I. I NTRODUCTION

M ODELS of computation are mathematical abstractions
of computational devices. They are usually used to

study the limits of computation. The same models, on the
other hand, can also be used to elaborate on related runtime
attributes of computational devices. Specifically,state change
is such an attribute that can be associated with an execution
of any abstract computing model.

State change characterization realized by working on
abstract computational models rather than on their imple-
mentations gives us: (i) an idea about state change related
limits of their implementations under certain conditions (ii)
an abstraction to investigate possible “coupled” classes of
languages that can be identified through the very basic
idea of state changes that occur during the execution of
an abstract machine. This in turn may lead to identification
of new abstract machines. State change based formalization
of abstract machines has been investigated in [1]. Related
to the item (ii), search for not coupled but robust classes
of regular languages (RL) is known to be a problem of
theory of computing, automata theory, formal verification and
regular model checking [2], [3]. In [2], for example, a robust
decidable class of RL recognized by finite ordered monoids,
calledW , has been proposed. Other example subclasses of
RL identified due to the “negative result that RL cannot be
inferred from positive data only” [4] include: k-reversible
languages [5], strictly RL [6], regular code languages [7]
and uniquely terminating RL [8]. Also note that the work
given here should not be confused with algorithmic energy
complexity as the latter must take Turing machines as a
basis and has been studied for other reasons rather than
studying the language properties admitted by the state change
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characterization. For example, some functions for specific
problems that can serve as a model to algorithmic energy
complexity of algorithms are introduced in [9], [10] to which
we refer the reader for further research regarding algorithmic
energy complexity in a broader sense.

In this paper, we propose a simple operator which shall
we call theC operator that enables model level state change
characterization of its possible implementations. We study
a possible “coupled” language class defined by the range
of the operator. Here, we restrict ourselves to a unary
mapping that operates on state change behavior of finite
automata. However, the idea can be extended to higher level
abstract machines in the hierarchy in which state change is
the common core idea. As a consequence, we identify a
new language class what we callstate change languages
(SCL), coupled to RL. Then, we investigate this coupled
language class and its closure properties. Note that the
effort can clearly be extended to alternative computational
models by defining suitable operators in order to observe the
corresponding language classes.

The remainder of the paper has the following organization.
In Section 2, we define the state change operator, and the
language class generated by this. In the same section, we
give some basic properties of the operator and show that
SCL is a proper subset of RL. In Section 3, we examine the
properties of SCL including a discussion on determinism.
Section 4 is devoted to the study of SA withǫ-transitions.
The last section includes conclusions and future work.

II. T HE C OPERATOR ANDSTATE CHANGE LANGUAGES

A. Notation

First we give the notation. We use standard set theoretical
operations⊆, ⊂, ∩, ∪ and− respectively for subset, proper
subset, intersection, union and set difference. We denote the
empty set by∅. For a setA, we denote power set, i.e. the
set of all subsets, ofA by P(A). The cardinality of a set
A is denoted by|A|. For an alphabetΣ, we denote the set
of all finite strings overΣ by Σ∗. Similarly, for a natural
numberk, Σk denotes the set of all strings of lengthk over
Σ. We denote the empty string byǫ.1 For a languageL,
we denote the complement ofL by L = Σ∗ − L. We use
lowercase letters such asu,w, v for strings and we usea, b
for symbols in the alphabet. For any two languagesL and
M , we denote the language concatenation byL◦M = {vw :
v ∈ L andw ∈ M}.

Definition 1: A finite automaton(FA) is a 5-tuple
(Q,Σ, δ, q0, F ), where
Q is a finite set of states,
Σ is the alphabet,

1In the figures, we denote the empty string simply bye.
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δ : Q× Σ ∪ {ǫ} → P(Q) is the transition function,
q0 ∈ Q is the start state, and
F ⊆ Q is the set of final states.

For an automatonA, we denote the language ofA by
L(A).

Clearly, the total number of state changes is bounded by
the length of the computation. So finding the minimum total
number of state changes for an accepting computation is
nothing but finding the shortest path from the start state to
any of the final states.

B. State Automata and State Change Operator

Definition 2: A state automaton(SA) (Q,Σ′, δ′, q0, F ) is
an FA with the following restrictions:

(i) Σ′ = {0, 1} is a restricted two symbol alphabet,
(ii) transition function includes transition rules either of

the form
δ′(p, 0) = {p} such thatp ∈ Q, or
δ′(p, 1) = R such thatR ∈ P(Q− {p}), or both.

Definition 3: The state change operator, denoted byC, is
a surjective mappingC : FA → SA such that, given an FA
A = (QA,ΣA, δA, q0A , FA), it produces an SAB = C(A) =
(QB ,ΣB , δB , q0B , FB) such that,QB = QA, ΣB = {0, 1},
q0B = q0A , FB = FA, and for eachδA(p, a) = R, we define
δB such that

if p 6∈ R, then δB(p, 1) = R;
otherwise δB(p, 0) = {p}, δB(p, 1) = R− {p}

as the new transition rules.
Simply, theC operator modifies the transition function of

a given FA by mapping its input symbols to either 0 or 1
according to the description given above. The transformation
takesO(|Σ||Q|2) steps.

Example 1:Let A = ({q0, q1} , {a, b} , δ, q0, {q1}) be an
FA such thatδ is defined as in Figure 1.

start q0 q1

a b

b

a

Fig. 1. A finite automatonA.

Notice that inA, state change occurs either when the
current state isq0 and the input isb, or when the current state
is q1 and the input isa. Then, by applying theC operator,A
is transformed by relabeling its input symbols. The transition
diagram of the new automaton is given in Figure 2.

start q0 q1

0 0

1

1

Fig. 2. State automatonB = C(A).

The output automatonB has a fixed alphabet{0, 1}. In
the transformation, the number of states and the number of

transitions are preserved. SinceA andB are topologically the
same in this sense, we can say thatC is topology preserving.
It is also easy to see thatC is idempotent, i.e.C(C(A)) =
C(A) for anyA. SinceC is surjective, it is not invertible. The
output automaton describes the state change based coupled
automaton description of a given FA under consideration.
The rest of the paper will be devoted to the study of the
language of this description.

Let Σ and Γ be two alphabets. Recall that a function
f : Σ∗ → Γ∗ is a homomorphismif f(ǫ) = ǫ and f(w) =
f(u)f(v) for all w, u, v ∈ Σ∗ such thatw = uv. One can
apply a homomorphism to a language by applying it to every
string in the language. We observe that theC operator allows
homomorphism of languages only in some cases. To see this
let A = (QA,ΣA, δA, q0A , FA) be an FA without empty
string transitions such thatL(A) 6= ∅. It is easy to see that
there exists a homomorphismh : Σ∗

A → {0, 1}∗ defined
overL(A) andL(C(A)) iff for each a ∈ ΣA, δA(p, a) = R

holds when eitherR = {p} or R ∩ {p} = ∅, for all
p ∈ QA. The general case fails however. Using Example
1 as a counter argument, we show that it is not always the
case that homomorphism of languages exists. Suppose for
a contradiction that some homomorphismh exists so that
wheneverw ∈ L(A), then h(w) = h(u)h(v) ∈ L(C(A)),
where w, u, v ∈ Σ∗ and w = uv. Consider the case
w = bb ∈ L(A). Then, h(bb) = h(b)h(b) must be in
L(C(A)). However, if we look at Example 1,bb gets the
value 10 for L(C(A)). This means that we cannot assign a
unique value forb.

We shall now investigate the language class defined by
SA.

Definition 4: A language is astate change language
(SCL) if some SA recognizes it.

Theorem 1:SCL ⊂ RL.
Proof: First we have to show that every language in SCL

is also in RL. This is obvious since every SA is an FA. Next,
we have to show that there exists some regular expression
E such thatL(E) 6= L(B) for any SA B. Suppose the
contrary. As a counter example, consider the language{0}
and suppose that{0} is in SCL. Then, there must exist an
SA B such thatL(B) = {0}. In this caseB must contain
a transition rule of the formδ(p, 0) = R − {p} which is
necessary for the generation of{0}, whereR ⊆ Q andQ is
the set of states ofB. But then this contradicts the definition
of SA that it cannot include such transitions.

In fact, when we think ofstate expressionsdefining an
SA, in the same manner regular expressions defining an FA,
we see that any state expression is a regular expression but
not the other direction does not always hold. It is easy to see
that 0k cannot be included in any kind of state expression
for any k > 0.

III. C LOSUREPROPERTIES OFSTATE CHANGE

LANGUAGES

It is known that RL is closed under union, intersection,
complement, difference, kleene star, concatenation, homo-
morphism, and inverse homomorphism [12], [11]. SCL is
not closed under homomorpism and inverse homomorphism.
In fact, the alphabet change is where the problem arises. If
we letΓ be the alphabet of an FA such that|Γ| > 2, then we
have a problem of representing state changes. We only have
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two symbols in SCL. The third symbol is undefined in SCL
and this results in any such string, containing three or more
different symbols, not being able to be interpreted in the SA
since the range of theC operator is binary. For the similar
reason, SCL is not closed under inverse homomorphism
h : Γ∗ → Σ∗, for any Γ such that|Γ| > 2. We next show
that SCL is closed under union.

Theorem 2:If L andM are in SCL, then so isL ∪M .
Proof: The proof is standard which is by product

construction of two SA in this case. IfL and M are in
SCL, then there exist two SAA1 = (Q1,Σ, δ1, q1, F1)
and A2 = (Q2,Σ, δ2, q2, F2) that recognizeL and M ,
respectively. ForL ∪ M , we construct an SAA such that
L(A) = L ∪M . The states ofA are of the form(Qx, Qy)
such thatQx ∈ P(Q1) andQy ∈ P(Q2). Furthermore, the
transition function ofA will be of the form δA : Q1 ×
Q2 ×Σ → P(Q1)×P(Q2). The start state ofA is the pair
(q1, q2), i.e. the start states ofA1 andA2. A should accept
if and only if either of the automata accepts. Therefore, the
final states ofA consist of pairs(Qxf , Qyf ) such that either
Qxf ∈ P(Q1)∩F1 6= ∅ or Qyf ∈ P(Q2)∩F2 6= ∅, or both.
So, we defineA = (Qx×Qy,Σ, δA, (q1, q2), Qxf×Qyf ) and
δA((p, q), a) = (δ1(p, a), δ2(q, a)). Thus,L(A) = L∪M .

Another fact about SCL is that it is not closed under
complementation unlike RL. Suppose the contrary. Let us
again consider the languageL = {1}. Clearly, L is in
SCL. Then, for instance, it must be the case that010 ∈ L.
But any SA which accepts this string must also accept1
which contradicts the fact that1 6∈ L. So unlike RL, we
conclude that SCL is not closed under complementation,
homomorphism and inverse homomorphism.

Still further, many languages recognized by SA cannot be
recognized by deterministic state automata (DSA). First, let
us give the following definition.

Definition 5: An FA A = (Q,Σ, δ, q0, F ) is said to be
incompleteif δ(q, a) = ∅ for some q ∈ Q and a ∈ Σ.
OtherwiseA is calledcomplete.

We argue that there is no general conversion from SA
to DSA preserving the language hence observe that SA
recognize more languages than DSA. For this we show that
there exists a language in SCL which cannot be recognized
by any DSA. First let us demonstrate that the application
of the standard non-deterministic FA to deterministic FA
conversion within the domain of SA fails. A simple case
is the languageL = {1}. AlthoughL can be recognized by
an SA whoseδ consists of a single transitionδ(q0, 1) = {qf}
such thatq0 is the start state andqf is the final state, this SA
is incomplete. Since all deterministic automata are complete,
the SA recognizing{1} must be non-deterministic. If we
define this SA on all arguments to make it complete, then all
states must self-loop with a 0 transition which would directly
change the language of the automaton. We shall also show
that the conversion fails from the domain of FA. Take the
same languageL. Then we observe that there must be a
coupled FA, sayA, which, when applied to theC operator,
gives an automaton having the languageL. If we apply the
FA to deterministic FA conversion onA then this will change
its topology. But then the obtained deterministic FA will be
coupled with an SA whose language is different thanL. Also
note that given two FA with different languages yet same
topology, their coupled SA will be the same.

IV. STATE AUTOMATA WITH ǫ-TRANSITIONS

Forbidding transitions with empty string does put a re-
striction on constructions for proving closure properties. It
naturally arises the question whether or not the empty string
in formal language theory provides us a basis to construct
the required automata to satisfy more closure properties.
Allowing empty string transitions in SA indeed makes things
easier and gives more closure properties. If we leave each
epsilon transition as it is and so add to the definition of
the C operator an appropriate rule, then some standard
constructions lead us to have richer closure properties. Next,
we shall investigate the properties of SA when one allows
transitions with the empty string, i.e.ǫ-transitions.

By definition, SA do not includeǫ-transitions. On one
hand, allowing theC operator to interpret the empty string
like other inputs might sound obscure since there would be
“internal” state changes viaǫ-transitions. On the other hand,
ǫ-transitions are independent from the input string and this
does not violate the notion of state change of an FA for
a given particular input string. This motivates us to useǫ-
transitions explicitly in state automata. In this case, we leave
eachǫ-transition in a given FA as it is. The definition of state
change operator should be therefore extended and adapted for
ǫ-transitions.

Definition 6: State change operator withǫ-transitions, de-
noted byCǫ, is a surjectionCǫ : FA → SA such that, given
an FAA = (QA,ΣA, δA, q0A , FA), it produces an SA withǫ-
transitionsB = Cǫ(A) = (QB ,ΣB , δB , q0B , FB) such that,
QB = QA, ΣB = {0, 1}, q0B = q0A , FB = FA, and for
eachδA(p, a) = R,

δB(p, ǫ) = R if (a = ǫ),
δB(p, 1) = R if (a 6= ǫ) and (p 6∈ R),
δB(p, 0) = {p} and
δB(p, 1) = R− {p} if (a 6= ǫ) and (p ∈ R).

Let us callǫ-SCL the set of languages recognized by SA
with ǫ-transitions. Clearly, every language in SCL is also in
ǫ-SCL. Usingǫ-transitions in SA gives modularity in proving
closure properties. Many of them become trivial to construct.
Union and product proofs are standard in this case. Other
than those two, we give the following closure properties.
In fact, notice that it is sufficient to just have SCL in the
hypothesis.

Theorem 3:If L and M are in SCL, thenL ◦ M is in
ǫ-SCL.

Proof: Let SL = (Ql, {0, 1}, δl, qls, Fl) and letSM =
(Qm, {0, 1}, δm, qms, Fm) be the SA forL and M , re-
spectively. The standard construction for the concatenation
of RL applies here. We construct an SASN = (Ql ∪
Qm, {0, 1}, δn, qls, Fm), where{δl} ∪ {δm} ⊆ {δn}, with
additionalǫ-transitionsδn(qlf , ǫ) = {qms} for eachqlf ∈ Fl.

e

. . .
 . . .


L
 M


q
mf

q
ls


q
lf
 q
ms


Fig. 3. State automatonSN with an ǫ-transition recognizing the language
L ◦M .

As shown in Figure 3, the resulting automaton is an SA
with an ǫ-transition. The input string will be accepted if and
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only if it has an accepting computation onSN which clearly
has the languageL ◦M .

Theorem 4:If L is in SCL, thenL∗ is in ǫ-SCL.
Proof: Let S = (Q,Σ, δ, q0, F ) be an SA such that

L(S) = L, whereF = {qf1 , . . . , qfi} for somei ≥ 1. We
construct an SA withǫ-transitionsS′ = (Q′,Σ, δ′, q′s, F

′), as
shown in Figure 4 such thatQ′ = Q∪ {q′s} andF ′ = {q′s}.
To obtainδ′ so that{δ} ⊂ {δ′}, we add the transition rules

.


.


.


.
.
.


.

.


.


.
 .
 .
q'

s


e


e


e


S


q
0


q
f1


q
fi


Fig. 4. State automatonS′ recognizing the language(L(S))∗.

δ′(q′s, ǫ) = {q0} and δ′(qfi , ǫ) = {q′s} for every qfi ∈
F . Then, the resulting automaton is clearly an SA withǫ-
transitions such thatL(S′) = L∗.

Let w = a1a2 . . . an be a string. Then, the reversal ofw is
wR = anan−1 . . . a1. For example ifw = 00110, thenwR =
01100. We denote the reversal of a languageL by LR =
{

wR| w ∈ L
}

. Reversal of a transition is simply switching
the direction.

Theorem 5:If L is in SCL, then so isLR.
Proof: Let A = (Q,Σ, δ, q0, F ) be an SA such that

L(A) = L. We defineAR = (Q,Σ, δR, s, q0) recognizing
LR such that we define a new start states with anǫ-transition
to all states inF . Note that we makeq0 as the only accepting
state ofAR. Since{p} ∈ δR(q, a) iff {q} ∈ δ(p, a), we have
thatL(AR) = (L(A))R = LR.

V. CONCLUSIONS

Every state change (or no state change) in an FA is coded
as a letter in its coupled SA. We investigate the properties of
their state change characteristics through the language class
it defines. SCL can be considered as a “coupled” language
defined (or coded) by the state transitions of an FA in its
computation. The obtained language class has been shown
to be closed under union but not under complementation
and homomorphism and inverse homomorphism. One may
define a language morphism between RL and SCL but only
under certain conditions. It has been shown that DSA are less
powerful in a sense of language recognition when compared
to SA. The properties of SA withǫ-transitions has been inves-
tigated and it has been observed that allowing such transitions
gives richer properties with convenient constructions.

From another perspective, introducing theC operator re-
veals the fact that there exists at least one interpretation
related with the syntax of FA. This interpretation can be
taken as the state change attribute.

An analysis through the state change characteristic gives
an idea about the relationship between the actual model and
its runtime behavior. In our case, the language of this behavor
has been shown to be a proper subclass of the language

of the actual model. It would be an interesting future work
to investigate such coupled language classification for more
complex models of computation. For this, one should first
introduce a general metric for characterizing the state change
of the desired higher model and then observe its language
class properties admitted by the metric. Finally, one may
then observe how it differs from the one obtained here. Lan-
guage classification within the state change characteristic of
computational models and investigating a possible hierarchy
indeed would be an interesting study in its own right. A more
interesting study could be done for those abstract models of
computation that are not well-defined physically, for example
quantum computational models, in order to have an idea
about their state change behavior on abstract level.
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