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Abstract

We study the degree spectrum properties of so called Π0
1 choice classes. A Π0

1 choice class is a
Π0

1 class in which no two members have the same Turing degree. This definition leads us to some
interesting cardinality properties, basis results and technically innovative constructions which might
give us an insight to construct new Π0

1 classes. The presented work can be considered as Π0
1 choice

class analogue of the work by Kent and Lewis [15].
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1 Notation and Terminology

We shall first give our notation and then proceed with Π0
1 classes. We assume some familiarity with the

basic properties of relative computability and Turing degrees. For a detailed account of computability,
we refer the reader to [23],[6] or [10].

Let ω denote the set of natural numbers. We let 2<ω denote the set of all finite sequences of 0’s
and 1’s. We denote sets of natural numbers with A,B,C and for a set A, A denotes the complement
of A, i.e. ω−A. The subset relation (not necessarily proper) is denoted by ⊂. We identify a set A ⊂ ω
with its characteristic function f : ω → {0, 1} such that, for any n ∈ ω, if n ∈ A then f(n) = 1, and
if n ̸∈ A then f(n) = 0. We let {Ψi}i∈ω be an effective enumeration of the Turing functionals. Ψe is
total if it is defined for every argument, otherwise it is called partial. The join of any given two sets A
and B is denoted by A⊕B = {2i : i ∈ A}∪{2i+1 : i ∈ B}. For any A ⊂ ω and n ∈ ω, Ψe(A;n) ↓= m
denotes that the e-th Turing functional with oracle A on argument n is defined and equal to m. For
any A and n, Ψe(A;n) ↑ denotes it is not the case that Ψe(A;n) ↓. Since Ψe(A) denotes a partial
function and since we identify subsets of ω with their characteristic functions, it is reasonable to write
Ψe(A) = B for some B ⊂ ω. We denote Turing degrees with boldcase letters a,b, c and we let D be
the set of all Turing degrees. Partial functions are also denoted by f, g. We let ⟨i, j⟩ be a computable
bijection ω × ω → ω.

We denote finite strings with lowercase Greek letters like σ, τ, η, ρ, π, υ. We let σ ∗ τ denote the
concatenation of σ followed by τ . We let σ ⊂ τ denote that σ is an initial segment of τ . We say a
string σ is incompatible with τ if neither σ ⊂ τ nor τ ⊂ σ. Otherwise we say that σ is compatible with
τ . Similarly, we say that σ extends τ if τ ⊂ σ. Let |σ| denote the length of σ. We let σ(i) denote the
(i+ 1)st bit of σ.

For any σ ∈ 2<ω and for any n ∈ ω, we let Ψe(σ;n) be defined and equal to Ψe(A;n) if σ(i) = A(i)
for all i < |σ| and if computing Ψe(A;n) requires only values A(i) for i < |σ|. Let A ↾ z and σ ↾ z
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denote, respectively, the restriction of A(x) or σ(x) to those x ≤ z. Ψi(σ)[s] denotes Ψi(σ) defined at
stage s. For a set A ⊂ ω, we define the jump of A, denoted A′, to be {e : Ψe(A; e) ↓}.

A set T of strings is downward closed if σ ∈ T and τ ⊂ σ then τ ∈ T . Occasionally we refer to
downward closed sets of strings as trees. We denote downward closed sets of strings by Λ,Υ. We say
that a set A lies on Λ if there exist infinitely many σ in Λ such that σ ⊂ A. A set A is a path on Λ if
A lies on Λ. We denote the set of infinite paths of Λ by [Λ]. A leaf of Λ is a string σ ∈ Λ such that for
all τ ⊃ σ, τ ̸∈ Λ. We say that a string σ ∈ T is infinitely extendible if there exists some A ⊃ σ such
that A ∈ [T ]. A tree T is perfect if every infinitely extendible string in T has at least two incompatible
extensions in T . If σ ∈ T then the level of σ in T is the number of proper initial segments of σ in T .
If σ, τ ∈ T and σ ⊂ τ and there does not exist σ′ with σ ⊂ σ′ ⊂ τ then we say that τ is an immediate
successor of σ in T and σ is the immediate predecessor of τ in T .

We say that P ⊂ 2ω is a Π0
1 class if there exists a downward closed computable set of strings Λ such

that P = [Λ]. We can then have an effective enumeration {Λi}i∈ω of downward closed computable
sets of strings such that for any Π0

1 class P there exists some i ∈ ω such that P is the set of all infinite
paths through Λi. A set A ⊂ 2ω is called perfect if there is no f ∈ A and an open set O such that
O ∩A = {f}, i.e. it has no isolated points. Occasionally we use subsets of Baire space ωω but unless
we explicitly state that, we will be working in Cantor space.

1.1 Background on Π0
1 classes

A Π0
1 class is an effectively closed subset in Cantor space. One important property of Π0

1 classes is that
for any computably axiomatizable theory (the deductive closure of a computably enumerable set of
sentences in a language), the set of complete consistent extensions can be seen as a Π0

1 class [21]. The
opposite direction is proved in [11]. That is, any Π0

1 class can be seen as the set of complete consistent
extensions of an axiomatizable theory. The compactness property of the Cantor space is provided by
the Weak König’s Lemma which tells us that if Λ is an infinite downward closed set of finite strings,
then there exists an infinite path through Λ.

Countable Π0
1 classes are another type of effectively closed sets. It is important to note that

countable Π0
1 classes contain isolated points and that every isolated point is computable [16]. So if a

Π0
1 class contains no computable member then it must be uncountable.
We are particularly interested in complexity of members of Π0

1 classes in the Turing degree universe.
This has led to a rich and well developed theory. Some of the most important and frequently used
results are basis theorems: a typical basis theorem tells us that every non-empty Π0

1 class has a member
of a particular kind. Anything which is not a basis is called non-basis. The Low Basis Theorem of
Jockusch and Soare [12], [13], for example, tells us that every non-empty Π0

1 class contains a member
of low degree, i.e. a degree a such that a′ = 0′. The same authors proved that any non-empty Π0

1

class contains a member of hyperimmune-free degree, i.e. a degree a such that for any A ∈ a and for
any function f ≤T A, there exists a computable function g such that g(n) ≥ f(n) for all n. These
results are proved by the method of forcing with Π0

1 classes in which we successively move from a set
to one of its subsets in order to force satisfaction of a given requirement. Another important basis
theorem for Π0

1 classes is that every non-empty Π0
1 class has a member of computably enumerable

degree, i.e. the leftmost path of any downward closed computable set of strings is of c.e. degree. One
interesting result by Jockusch and Soare is that every Π0

1 class which does not contain a computable
member contains members of degrees a and b such that a ∧ b = 0. However, this does not hold for the
cupping case. It is shown in [7] that there exists a Π0

1 class P with no computable member such that
∅′ ̸≤T A⊕B for any A,B ∈ P. Another non-basis result, given in [13], is that the class of computably
enumerable degrees strictly below 0′ does not form a basis. Similarly, the class of computable sets
does not form a basis since there exists a Π0

1 class such that all members are non-computable. From
now on we shall call Π0

1 classes with no computable member special Π0
1 classes. In [9], it was proven

that every non-empty special Π0
1 class contains a member of properly lown degree, i.e. a degree a such

that a(n) = 0(n) but a(n−1) ̸= 0(n−1).
An antibasis theorem tells us that a Π0

1 class cannot have all/any members of a particular kind
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without having a member of every degree. Kent and Lewis [15] proved the Low Antibasis Theorem
which says that if a Π0

1 class contains a member of every low degree then it contains a member of every
degree. In [8], a stronger result was shown that for any degree a ≥ 0′, if a Π0

1 class P contains members
of every degree b such that b′ = a, then P contains members of every degree. A local version of this
result is also given in the same work. Namely that when a is also Σ0

2, it suffices in the hypothesis to
have a member of every ∆0

2 degree b such that b′ = a. We will give some antibasis results results for
Π0

1 choice classes and we will observe that such results become more proper when we take Π0
1 choice

classes in our hypothesis.
An extensive survey for Π0

1 classes can be found in [2] and [9].

2 Properties of Π0
1 choice classes

We first study the basic properties of Π0
1 choice classes which are defined as follows.

Definition 1. A Π0
1 class is called a choice class if no two members have the same Turing degree.

Definition 2 (Kent and Lewis, 2010). For any P ⊂ 2ω, define S(P), the degree spectrum of P, to be
the set of all Turing degrees a such that there exists A ∈ P of degree a.

Define Pc = {S(P) : P is a Π0
1 choice class}. We denote the elements of Pc by α, β, γ. Similarly,

we define P in the same manner for Π0
1 classes. We study the structure (Pc, <) where the elements

are ordered by inclusion. We shall also investigate degrees which are called choice invisible degrees
that are not contained in any of the degree spectra of Π0

1 choice classes. This gives us proper antibasis
results. Note that, for Π0

1 classes, since they can contain members of every degree, an antibasis result
for such classes makes less sense in this case. However, as we will see, one does not need to worry
about this exceptional case for Π0

1 choice classes.
It is known that Π0

1 choice classes do exist. A strong example for a Π0
1 choice class would be a

Π0
1 class such that every member is incomparable with each other. The existence proof was given in

Theorem 4.7 of [12]. Our first observation is that if P is a Π0
1 choice class then S(P) ̸= D. This follows

from the fact that, shown in [15], a Π0
1 class P contains all paths through a perfect computable tree T

iff it has members of every degree. To see why this is enough to ensure that P is not a Π0
1 choice class,

suppose that P contains all paths through T of this kind. Given any set B, we can then define a set
CB ∈ [T ] such that CB =

∪
s∈ω σs which is of the same degree as of B. We define σ0 to be the string

at level 0 in T . Given σs, we let σs+1 to be the leftmost successor of σs in T if B(s) = 0. Otherwise,
define σs+1 to be the rightmost successor of σs in T . Then for B′ ̸= B but of the same degree as
B, CB′ ̸= CB but CB′ ∈ [T ] and CB ∈ [T ]. Note that the same argument suffices to show the other
direction.

Since no Π0
1 choice class contains members of every degree, in particular there exists a Π0

1 class P
such that S(P) ̸= S(Q) for any Π0

1 choice class Q. Another interesting observation is that Π0
1 choice

classes appear to have cardinality restrictions. Clearly, a non-empty Π0
1 choice class cannot be finite

unless it has a single element, because the members of finite classes are all computable. In fact, we
now show something stronger than this.

The following is a sufficient condition for the statement that every non-empty element of Pc, except
{0}, is uncountable.

Theorem 3. Any countably infinite Π0
1 class has members of the same degree.

Proof. Let P be a countably infinite Π0
1 class. We show that there are at least two computable members

in P. For this it suffices to show that in fact there are at least two isolated points. Suppose that, for
the sake of contradiction, P is countable and has only one isolated point, say A. Let Q = P − {A}.
Now Q is still a closed set because A is an isolated point. So Q is a Π0

1 class which contains no isolated
point. Then, Q is a perfect set. Therefore, Q is uncountable. But then, P is uncountable since Q ⊂ P.
A contradiction. □
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So every non-empty Π0
1 choice class is necessarily uncountable unless it is a singleton. Since there

does not exist a Π0
1 choice class which contains members of every degree, it is natural to ask first

if there exists a maximal element of (Pc, <). It is known that there is no maximal element of P for
special Π0

1 classes. This is provided by Jockusch and Soare [13]. The theorem says that if P is a special
Π0

1 class then there exists a non-zero computably enumerable degree a ̸∈ S(P). On the other hand,
for every degree a with 0 < a ≤ 0′ there exists a special Π0

1 class P ′ with a ∈ S(P ′). Then P ′ ∪ P is
a special Π0

1 class and it properly includes P.
We know due to Kent and Lewis [15] that for (P, <), the greatest element is D. However, since

D ̸∈ Pc, it is reasonable to ask if there exists a maximal element in the case for Π0
1 choice classes. We

now show that there is no maximal element of (Pc, <) and we do not need to worry this time about
the cases where the given class contains members of every degree since the set of all Turing degrees is
not a degree spectrum of a Π0

1 choice class.
To prove that (Pc, <) has no maximal element, we are given a Π0

1 choice class P such that S(P) = α,
where α ̸= D of course, and we want to construct a Π0

1 choice class Q ⊃ P with S(Q) = β and α < β.
A way to construct such Q is to add reals in P to extend it to a larger class Q. Note that we do
not need Q− P to be infinite since it would be sufficient to add a single element whose degree is not
the same as the degree of any member in P. Other kinds of extensions are possible as well. A few
notions which we are not going to cover here were introduced by Cenzer and Riazati [3] on the minimal
extensions of Π0

1 classes, and by Lawton [19] on minor superclasses of Π0
1 classes.

We use a similar idea introduced in Cenzer and Smith [4] to construct such Q. Now it is easy to
observe that any countable set of Turing degrees is not the degree spectrum of a Π0

1 choice class unless
it is {0}. The next theorem is a generalized result for adding arbitrary computably enumerable sets
into a given Π0

1 class.

Theorem 4. If α is the degree spectrum of a Π0
1 class P then for any computably enumerable degree

a ̸∈ α, α ∪ {a} is the degree spectrum of a Π0
1 class.

Proof. Let A be a computably enumerable set of degree a. Suppose that we are given an enumeration
of A,

f(n) = µs(As ↾ n = A ↾ n).

So f(n) shows how long we have to wait until the enumeration of A is correct up to the initial
segment of length n. Let fs(n) = µs′ ≤ s such that As′ ↾ n = As ↾ n. Note that since f and A are
both computable in each other, f is non-computable assuming that A is non-computable. However,
fs is computable. As s increases, fs(n) can only get larger.

A copy of P = [Λ] for some downward closed computable set of strings Λ, is defined by the set
{τ ∗ σ : σ ∈ Λ} for any τ . The idea behind the proof is to code the enumeration function on a path
of the Π0

1 class that we want to construct and put above some strings a copy of P, having degree
spectrum α. We shall also define a set, called Υ∗, which will be used in the construction. The role of
Υ∗ is to put delimeters along the way of the path of the enumeration in a way so that we can encode
a kind of enumeration distance between the enumerated elements of A, i.e. the number of stages
required for the enumeration of the next element in A. We keep adding a copy of P until we change
our mind about fs(n), for some n, s ∈ ω and increase our guess. Clearly, fs(n) gets changed finitely
many times. If we never have to come back to increase our guess about fs(n), then we are fine since
we will be leaving a copy of P above the point where As ↾ n = A ↾ n. If we come back to increase
our guess, we discard all but one branch and raise the delimeter symbol for coding the enumeration
distance in stages. However, since there will be 0’s and 1’s in the copy of P, we have to use a delimeter
different than 0 or 1 as these will be coding the copy of P. For this purpose we build our new Π0

1 class
with degree spectrum α ∪ {a} as a subset of {0, 1, 2}ω and use the distance between 2’s to code the
enumeration function f .

Now suppose that P = [Λ] is a Π0
1 class with degree spectrum α and suppose that we are given a

computably enumerable degree a ̸∈ α. We build a downward closed set of strings Υ =
∪

s∈ω Υs as a
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subset of {0, 1, 2}<ω such that Q = [Υ] is a Π0
1 class with degree spectrum α ∪ {a}. So we consider Υ

like a ternary tree containing copies of P and a path of degree a. When building Q, we begin to place
a copy of P above strings that end with a 2 in Υs in the form of a set of strings in Λ up to a certain
length at each stage of the construction. Once the value of fs(n) is settled, we will be leaving a copy
of P. More formally, when putting the bits of Λ into Υs, we put Λ up to strings of length fs(0) + 1,
fs(1) + 1, fs(2) + 1, and so on. Let us consider a set Πs of strings of the form

{0, 1}fs(0)+12{0, 1}fs(1)+12{0, 1}fs(2)+12 · · ·.

Since we are enumerating the branches of Λ between 2’s, if we let Λ ↾ n denote the set of strings in
Λ of length n then we can put the strings in Πs of the form

(Λ ↾ f(0) + 1)2(Λ ↾ f(1) + 1)2(Λ ↾ f(2) + 1)2 · · ·.

The construction is as follows.
At stage 0, we enumerate ∅ into Υ0 and define Υ∗ = ∅.
At stage s+ 1. Given Πs and Υs, let σ be a leaf of Υs.

(i) We enumerate σ ∗ d into Υs+1 for d ∈ {0, 1, 2} if there exists a string τ ∈ Πs such that σ ∗ d ⊂ τ .

If d = 2, then we enumerate σ ∗ d also into Υ∗.

(ii) To put a copy of P, we see if σ has an initial segment in Υ∗. If so, let υ ∈ Υ∗ and π ∈ Πs be
such that υ ∗ π = σ. For d ∈ {0, 1}, enumerate σ ∗ d into Υs+1 if π ∗ d ∈ Πs.

As for the verification, we argue that Q contains a path which codes f and contains copies of P.
At stage s, let σ be a leaf of Λs. Whenever we find τ such that τ ⊃ σ ∗ 2, as we enumerate σ ∗ 2 into
Υs+1 and Υ∗, it follows that τ with 2’s removed from it is an initial segment of As. As s increases, so
does the enumeration distance between the elements that f enumerates and coded into Υ until fs(n) is
not changed anymore. To see that we leave a copy of P in Υ, let σ be the least string in Υs such that
τ ̸∈ Πs for all τ ⊃ σ, for a sufficiently large stage s. We know that such stage exists since every fs(n)
gets changed finitely many times. Then for all s′ > s, step (ii) guarantees by putting two incompatible
extensions of τ ′ that τ ∗ τ ′ ∈ Υs′ for every τ ∈ Λ and hence we leave a copy of P.

□

Corollary 5 (Cenzer and Smith, 1989). For any non-zero computably enumerable degree a, {0,a} is
the degree spectrum of a Π0

1 class.

We now want to show that the last theorem holds for Π0
1 choice classes.

Theorem 6. If α is the degree spectrum of a Π0
1 choice class P then for any computably enumerable

degree a ̸∈ α, α ∪ {a} is the degree spectrum of a Π0
1 choice class.

Proof. Now if we want Theorem 2.4 to work for Π0
1 choice classes we have to be careful and do some

more work because we do not want to have multiple copies of the given class P = [Λ], for some
downward closed computable set of strings Λ, in the class Q = [Υ] that we want to construct. One
solution is to copy mutually disjoint subclasses of P into different parts of Q. However, there are some
technical difficulties. If we are given a Π0

1 choice class P such that P = [Λ] for some downward closed
computable set of strings Λ, with a degree spectrum α and if a ̸∈ α is a computably enumerable degree,
then we construct our new Π0

1 choice class Q having degree spectrum α ∪ {a} in the following way.
Since we want to enumerate mutually disjoint subclasses of P, above various strings in Υ, we have

to decide which sections of P we should take. For this we shall define an approximate to a sequence
of pairwise mutually incompatible strings {σs}s∈ω in Λ.

For i ∈ ω, let [σi] denote the set of infinite branches of {τ ∈ Λ : τ is compatible with σi}. Each
σs will satisfy P ∩ [σs] ̸= ∅ and if A is the leftmost path in [Λ] then we should have that P =
{A}∪

∪
i∈ω([σi]∩P). For any s ∈ ω, let us denote the class [σs] by Ps. Now for any s ∈ ω, Ps is a Π0

1

choice class since Ps ⊂ P and also for any s, t ∈ ω, Ps ∪ Pt is a choice class because of the fact that
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they are mutually disjoint subclasses of P. Instead of adding the entire class as in the earlier proof,
we keep on adding the mutually disjoint subclass of P above different strings in Υ. Namely, we add
Ps for every s ∈ ω. As we keep on enumerating strings into Q, one of the following problems might
occur in Ps.

(i) We find out that the set of infinite paths in [Λ] above our present approximation to some σs is
empty.

(ii) We eventually find out that the set of infinite paths above some σs turns out to be the whole
class P.

The reason that these might cause problems is because we have to code the enumeration function
of the given set of computably enumerable degree a on an infinite path of Q and we might need to
change our guess about the sequence of mutually incomparable strings. So we have to change our mind
about the values σs, and so about the various Ps of which we are placing copies in Q. Note that it
is also a problem that even if we add copies of all Ps into Q, we will still miss the leftmost branch
A ∈ P because for any i, j ∈ ω, σi is incompatible with σj and if one looks at Figure 2, in such kind of
mutually incompatible sequence of strings for forming a sequence of mutually disjoint subclasses of P,
the leftmost path will not be covered by the mutually incompatible sequence of strings. This leftmost
path, however, is of computably enumerable degree, just like a. Then, instead of enumerating a single
computably enumerable set into Q, we also have to enumerate the leftmost branch of P that we miss.
But then we have to be careful about not duplicating the branches of P when we put copies. We can
solve this by enumerating the bits of Ps on two computably enumerable branches in an alternating
fashion. That is, since we enumerate in two computably enumerable branches, we put the bits of Ps

into the first computably enumerable branch then enumerate Ps+1 into the second, Ps+2 into the first
again and so on.

new r.e. path missing r.e. path

P1

P3

P5

P0

P2

P4

Figure 1: Two computably enumerable paths on Q.

When we approximate the sequence {σs}s∈ω problem (i) or (ii) may occur. To overcome these
problems, it suffices to ensure that for each i ∈ ω the class P ∩ [σi] is non-empty and that each branch
on Λ, except the leftmost branch, extends some σi.

Regarding problem (ii), if there exists a string σ ∈ Λ such that the set of infinite paths above σ is
actually the entire class, then the set of infinite paths above any string τ ∈ Λ which is incompatible
with σ must be empty. However, we may still have finite branches above σ. If this is the case then
we have to work on the subtree above σ. If we denote the subtree of Λ above σ by Λ′ and if we let
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P ′ = [Λ′] be a Π0
1 class, clearly P ′ is a Π0

1 choice class since Λ′ ⊂ Λ. Moreover, S(P ′) = S(P) since
P ′ −P has no infinite branch, and in fact P = P ′.

We shall now give the construction of the sequence of mutually incompatible strings.
Now let Λ ↾ n denote the elements of Λ of length n. We assume further that P has no isolated

members, i.e. there does not exist any finite σ such that P has precisely one element extending σ. We
can assume this because we can separately enumerate in any isolated path to our new class at the very
end of its construction.

b

b

b

b

bb

σ1

σ2

σ0

Figure 2: An illustration of how {σi}i∈ω could be formed.

Let A be the leftmost element of P. The following construction produces an approximation to a
sequence {σi}i∈ω such that the members of this sequence are pairwise incompatible and satisfy:

a) For each i ∈ ω, P ∩ [σi] is non-empty.
b) For all B ∈ P except A, there exists i ∈ ω with σi ⊂ B.
We define values σi[s] for a finite number of i at each stage s of the construction. So σi[s] shows

our guess for σi at stage s. For each i we shall ensure σi[s] is defined and takes the same value for all
sufficiently large s.

At stage s = 0, we let τ = ∅.
At stage s > 0, let τ be the leftmost element of Λ of length s. Perform the following iteration until

instructed to stop:
Step i. Let ρi be the rightmost element of Λ ↾ s which does not extend any σj [s] with 0 ≤ j < i. If

ρi = τ then terminate the iteration, and proceed to the next stage of the construction. Otherwise, let
υi be the longest string which is an initial segment of both τ and ρi. Define σi[s] = υi ∗ 1, and proceed
to step i+ 1 of the iteration.

Now we verify that the sequence {σi[s]}s∈ω converges for every i ∈ ω and satisfies the desired
properties in (a) and (b) written above. Recall that A is the leftmost member of P. Let B0 be the
rightmost element of P, and let υ0 be the longest string which is an initial segment of both A and B0.
Given Bi and υi, let Bi+1 be the rightmost element of P extending υi ∗ 0, and let υi+1 be the longest
string which is an initial segment of both A and Bi+1.

For each i we wish to show:
(a) For all sufficiently large s we have:
σi[s] ↓= υi ∗ 1.
(b) All elements of P extending σi or to the right of σi, extend some σj for j ≤ i.
Suppose (a) and (b) are true for all j < i, and let s be large enough that, for all s′ ≥ s and all

j < i, σj [s
′] ↓= υj ∗ 1.

Now let s′ > s be sufficiently large that there do not exist any elements of Λ ↾ s′ strictly to the
right of υi, other than those which extend some σj for j < i (the fact that such an s′ exists follows
from the compactness of Cantor space, i.e. König’s Lemma).
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Then at all stages s′′ ≥ s′ we have σi[s
′′] ↓= υi ∗ 1, and (b) also clearly holds as required.

Now that we have {σi}i∈ω, we describe how to construct Q. The construction of Q uses the
previous lemma but modified as described here. For the construction we shall have a supermodule µ
which handles two submodules; one for the new computably enumerable branch and one for the missing
computably enumerable branch. Let us call them κ and λ, respectively. Now κ will use Theorem 2.4
but instead we put Pi such that i = 2j for every j ∈ ω above the j-th enumeration point. Then, in
the limit, we obtain on this side a Π0

1 choice class with a computably enumerable branch of degree a
with single copy of each Pi such that i = 2j for every j ∈ ω. Module λ is defined similarly for the
missing leftmost path of computably enumerable degree and subclasses Pi such that i = 2j + 1 for
every j ∈ ω. Again, we eventually obtain a Π0

1 choice class containing a member of degree deg(A) with
single copy of each Pi such that i = 2j + 1 for every j ∈ ω. The supermodule µ passes the control to
κ at even stages and to λ at odd stages to fully obtain Q. Then, Q is clearly a Π0

1 choice class such
that S(Q) = α ∪ {a}.

□

The proof can be easily modified to get the same result for ∆0
2 degrees. Instead of coding the

modulus function for computably enumerable sets, we code the modulus function for ∆0
2 sets and the

construction becomes very similar. Then, since a Π0
1 choice class cannot contain members of every ∆0

2

degree, this makes sure that the following corollaries hold.

Corollary 7. (Pc, <) has no maximal element.

Definition 8. We say that β is a minimal cover for α if there is no γ ∈ Pc strictly between α and β.

Corollary 9. For every α ∈ Pc such that α ̸= {0}, there exists a minimal cover for α in Pc.

Determining, on the other hand, whether or not {0} has a minimal cover would be interesting in
its own right. The following is another observation about the structure of the degree spectra of Π0

1

choice classes.

Theorem 10. (i) (Pc, <) has a least element and it is defined as 0Pc = 0P = ∅.

(ii) We say that α > 0Pc in Pc is minimal if there does not exist β ∈ Pc with 0Pc < β < α. Then,
(Pc, <) has only one minimal element, i.e. {0}.

Proof. There is nothing to prove for (i).
We prove (ii). Obviously {0} is minimal. Suppose that there is another minimal element of Pc, say

α. Then there would be a Π0
1 choice class P such that S(P) = α and P = [Λ] for some downward closed

computable set of strings Λ. Note that S(P) must be uncountable. Take two immediate incompatible
extensions, σ and τ , of any element of Λ. Remove every extension of τ and let R be the resulting
class with a degree spectrum β. Now, R is a Π0

1 choice class such that R ⊂ P and hence β < α. A
contradiction. □

Definition 11. We say that a poset P has the meet property if for any a there exists some b such that
a ∧ b gives the least element of P .

We now want to show that (Pc, <) has the meet property. This almost follows from a theorem due
to Cole and Simpson [5]. However, to get the desired result we need to modify it for Π0

1 choice classes.
The original theorem is as follows and the proof can be found in [15].

Theorem 12 (Cole and Simpson, 2007). For any special Π0
1 class P0 there exists a special Π0

1 class
P1 such that no member of P1 computes any member of P0.

We now prove a similar statement for Π0
1 choice classes as follows.

Theorem 13. For any Π0
1 class P0 there exists a special Π0

1 choice class P1 such that no member of
P1 is Turing equivalent to a member of P0.

8



Proof. Let P0 be given such that P0 = [Λ] for some downward closed computable set of strings Λ. We
define an approximation to a set of strings T such that P1 = [T ] is a Π0

1 choice class which satisfies the
statement of the theorem. For each level of T , we aim to satisfy a single requirement for those strings
at that level. Specifically, all those strings at level 3i+ 1 will be defined so as to satisfy

Ξi : If A ∈ P1 and Ψi(A) is total then Ψi(A) ̸∈ P0.
For those strings at level 3i+2, we should aim to satisfy the choiceness property (in fact we satisfy

something stronger in the construction). That is,
Θi : If A ∈ P1 and C ∈ P1 then A ̸= Ψi(C) or C ̸= Ψi(A).
Finally, we have the non-recursiveness requirement for strings at level 3i+ 3 as
Ωi: If A ∈ P1, then A ̸= Ψi(∅).
At stage s = 0, enumerate ∅ into T .
At stage s > 0,

(i) Find the least string τ ∈ T such that τ is of level 3i+1, Ψi(τ)[s] is compatible with some string
in Λ of length s and there is some leaf τ ′ of T extending τ such that Ψi(τ

′)[s] properly extends
Ψi(τ)[s]. If this is the case then we remove all strings extending τ from T except τ ′.

(ii) We find the least string τ ∈ T such that τ ⊂ Ψi(σ)[s] for some σ ∈ T of level 3i + 2 which is
incompatible with τ . If such τ exists, we remove all strings extending τ from T and enumerate
two incompatible extensions of σ into T .

(iii) Let τ ∈ T be the least string that is of level 3i+ 3 and τ ⊂ Ψi(∅)[s]. If such τ exists, let τ ′ ∈ T
be the successor of the predecessor of τ that is incompatible with τ . We then remove all strings
extending τ and enumerate two incompatible extensions of τ ′ into T .

After these instructions, choose two incompatible strings extending each leaf of T , and enumerate
these strings into T .

We claim that P1 is a Π0
1 class. For this we let Υ be the set of all strings which are initial segments

of strings in T at any stage. We show that Υ is downward closed, computable and [Υ] = [T ]. Now Υ is
computable since we enumerate in strings that only extend strings in Υ of the previous stage. Clearly,
every infinitely extendible string in T is also in Υ by the definition of Υ. The opposite direction is
also true. By contrapositive, suppose that σ is not infinitely extendible in Υ. Then σ must be a leaf
of T in which case σ is not infinitely extendible in T since otherwise σ would be infinitely extendible
in Υ. Approximation to T converges, i.e. requirements are satisfied. It is easy to see that step (iii)
ensures that P1 has no computable members. Note that if P0 has a computable member A, then
B ̸≤T A is automatically satisfied for any B ∈ P1 since P1 is guaranteed to be a special Π0

1 class. So
S(P0) ∩ S(P1) = ∅ holds when P0 is infinite and non-special. It is also clear that step (ii) ensures
that no branch of P1 computes another for the choiceness property. For this suppose that A,C ∈ P1

such that A ̸= C and A ≡T C. Then, for all σ ⊂ A, where σ ⊂ Ψi(C), we have σ ∈ T . Let σ0 be
the immediate predecessor of σ. Then, any extension of σ0, compatible with σ, are not enumerated
into T . But then there are finitely many σ’s in T satisfying σ ⊂ Ψi(C). Similar argument also gives
a verification for the Ωi requirements. For the Ξi requirements, suppose that for some least i there
is a sequence {τj}j∈ω of strings such that each τj is a string of level 3i + 1 in T at some stage of the
construction and τj ⊂ τj+1 for all j. Let A =

∪
j∈ω τj . Then Ψi(A) is computable and is in P0. A

contradiction. □

Corollary 14. (Pc, <) has the meet property.

3 Decidability of the ∃-theory of (Pc, <)

Next, we consider the existential (∃) theory of (Pc, <) and observe that it is decidable indeed. By the
∃-theory of (Pc, <), we mean the set of sentences in the first order language of partial orders that are
true about the degree spectra of Π0

1 choice classes, and that are of the form ∃x1∃x2 · · · ∃xkR(x1, . . . , xk)
for some k ∈ ω, where R(x1, . . . , xk) is a quantifier free expression with free variables x1, . . . , xk.
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Theorem 15. The ∃-theory of (Pc, <) is decidable.

Proof. To prove that the ∃-theory of (Pc, <) is decidable we use the known techniques as in [1]. We
define a countable infinite independent sequence {Pn}n∈ω of Π0

1 choice classes with degree spectra
{αn}n∈ω, i.e. a sequence satisfying that αk ̸⊂ αk1 ∪ · · · ∪ αkn with k ̸= ki for any of the ki’s.

We begin with a Π0
1 choice class P = [Λ] for some downward closed computable set of strings Λ

such that all members in P are Turing incomparable. Let {σi}i∈ω be a sequence of mutually pairwise
incomparable set of finite strings in Λ the same manner in Theorem 2.6. Given any n ∈ ω, we let Pn to
be the Π0

1 choice class above σn, i.e. the set of all infinite strings in P extending σn. Note that this is a
Π0

1 choice class because all members are still Turing incomparable since Pn ⊂ P. If we take any finite
set J ⊂ ω and take P ′ =

∪
n∈J Pn, which is a Π0

1 choice class since P ′ ⊂ P and P contains members
that are Turing incomparable, then it is easy to see that αm ̸⊂ S(P ′) for m ̸∈ J . It remains to state
that there exists an embedding from any finite partially ordered set into the structure of the degree
spectra of Π0

1 choice classes. We omit the proof of this fact since it is standard (for demonstration, the
reader may refer to Lemma 17 in [7]). □

4 Choice invisible degrees

Next, we want to show that there exists a degree such that no Π0
1 choice class contains a member

of that degree but can be contained in a Π0
1 class which does not contain a member of every degree.

These kinds of results are often associated with antibasis theorems. Examples of antibasis theorems
can be seen in [15] and [8]. When proving antibasis theorems for Π0

1 classes, we usually exclude the
case that the given class might contain a member of every degree. Then for Π0

1 choice classes, it is
more concrete to have an antibasis result since there is no such Π0

1 choice class at all which contains a
member of every degree. This way we avoid the exception of having a Π0

1 class containing a member
of every degree.

Definition 16. A degree is called invisible if no Π0
1 class contains a member of that degree unless it

contains a member of every degree. A degree is choice invisible if no Π0
1 choice class contains a member

of that degree.

Let I denote the set of all invisible degrees for Π0
1 classes and let CI denote the set of all choice

invisible degrees. Every invisible degree is choice invisible. But we ask if the relation I ⊂ CI is strict
and we will show that CI− I is indeed non-empty.

Recall that a degree is PA if it contains a set which codes a complete consistent extension of
Peano Artihmetic according to some computable bijection between sentences of first order language of
arithmetic and the natural numbers. Although we give a more precise definition later, let us call for
now a degree Martin-Löf random (1-random) if it contains a random set. It is worth noting that every
degree a ≥ 0′ is 1-random. They are also PA since 0′ is a PA degree and PA degrees are upward closed.
Moreover, if a is PA and 1-random, then 0′ ≤ a. For a detailed account of the theory of algorithmic
randomness we refer the reader to [10] and [20]. We first consider hyperimmune-free PA degrees for
our purpose and then we look at 1-random sets.

Definition 17. (Kent and Lewis, 2010) We say that α ̸= 0P is subclass invariant if for any Π0
1 class

P with S(P) = α and any non-empty Π0
1 class P ′ ⊂ P, S(P ′) = α. We say that α ̸= 0P is weakly

subclass invariant if there exists a Π0
1 class P with S(P) = α and for any non-empty Π0

1 class P ′ ⊂ P,
S(P ′) = α.

Now, any α which is minimal must be subclass invariant. If α is subclass invariant, suppose that
P is a Π0

1 class such that S(P) = α and suppose that P ′ is a non-empty Π0
1 class with S(P ′) ⊂ α.

Then let Q = {0 ∗ A : A ∈ P} ∪ {1 ∗ A : A ∈ P ′} be a Π0
1 class. Note that S(Q) = α, so Q witnesses

the fact that α is not subclass invariant which is a contradiction. So subclass invariancy is equivalent
to minimality.
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Theorem 18. (Kent and Lewis, 2010) Suppose that α is weakly subclass invariant. If a Π0
1 class

contains any member of any hyperimmune-free degree in α then it contains a member of every degree
in α.

Then, by the hyperimmune-free basis theorem, any non-empty Π0
1 class which contains only mem-

bers of degree in α contains a member of hyperimmune-free degree in α. Hence, by the theorem above,
we have the fact that α is minimal if and only if it is weakly subclass invariant.

It is known that a degree is PA if and only if it contains a {0, 1}-valued DNR function, where a
function f : ω → ω is {0, 1}-valued DNR if f(n) ̸= Ψn(n) such that f only takes values in {0, 1}. Let r
be the set of all 1-random degrees and let p be the set of all PA degrees. Kent and Lewis [15] showed
that both r and p are minimal in (P, <). This is not the case for Π0

1 choice classes. In fact, we claim
that r and p are not in Pc. The reason is that if a Π0

1 class contains a member of hyperimmune-free PA
degree, then it contains a member of every PA degree. This is basically followed by the hyperimmune-
free basis theorem and by the fact that any non-empty Π0

1 class containing only {0, 1}-valued DNR
functions contains a member of every PA degree. The proof of the latter fact, originally proved in [22],
appears in [15]. We modify that proof to get the desired result. But first we need to give a lemma.

Lemma 19. If there exists a Π0
1 choice class which contains a member of hyperimmune-free PA degree,

then there exists a non-empty Π0
1 choice class which contains only {0, 1}-valued DNR functions.

Proof. Let P be a Π0
1 choice class containing a hyperimmune-free PA member A. Then there exists a

set B which is {0, 1}-valued DNR such that A ≡tt B. This means there are total Turing functionals
Ψm and Ψn such that Ψm(A) = B and Ψn(B) = A. We then let Q contain all sets C such that
Ψn(C) = D and Ψm(D) = C, where D is a member of P. We then let Q′ be the elements of Q which
are {0, 1}-valued DNR. We need to argue that Q′ is a non-empty Π0

1 choice class. Now an infinite
string is {0, 1}-valued DNR if and only if there is no finite stage at which we see that some initial
segment of it is not {0, 1}-valued DNR. So then, we take a downward closed and computable set of
strings Λ such that Q = [Λ]. To form Λ′ such that Q′ is the set of infinite paths on Λ′, we enumerate
Λ but whenever we see that any finite string σ is not {0, 1}-valued DNR, we stop enumerating in any
extensions of σ. Then let Q′ be the set of infinite paths through Λ′. Clearly, Q′ is a non-empty Π0

1

choice class containing only {0, 1}-valued DNR functions. □

To prove our claim we now modify the proof of Theorem 5.2 in [15].

Theorem 20. Any non-empty Π0
1 class P containing only {0, 1}-valued DNR functions contains a

member of every PA degree. Moreover, P contains members of the same degree.

Proof. The proof uses forcing with Π0
1 classes. If Λ is computable and downward closed then consider

Ψi(∅) such that Ψi(∅; i) ↓= n if and only if there exists some l > i such that τ(i) = n for all τ ∈ Λ of
length l. By the uniformity of the Recursion Theorem, there exists a computable function f such that,
whenever [Λj ] is non-empty and contains only {0, 1}-valued DNR functions, there exist sets A,B ∈ [Λj ]
with A(f(j)) = 0 and B(f(j)) = 1. Here one can also use Lemma 2.6 in [18].

Assume that we are given j0 such that [Λj0 ] = P is non-empty and contains only {0, 1}-valued
DNR functions. Let A be a {0, 1}-valued DNR function. We construct B =

∪
s∈ω σs which is in P

and is of the same degree as A. We define an infinite descending sequence [Λj0 ] ⊃ [Λj1 ] ⊃ [Λj2 ] ⊃ · · ·
for approximating B in P.

At stage 0: Define σ0 = ∅.
At stage s > 0: Suppose that we have already decided js−1 and σs−1. Suppose also that there

exists C ∈
[
Λjs−1

]
with C(f(js−1)) = A(s− 1).

Using an oracle for A, we can therefore compute σ of length f(js−1) + 1 such that σ(f(js−1)) =
A(s− 1) which is an initial segment of some C ∈

[
Λjs−1

]
. This follows from the fact that any {0, 1}-

valued DNR function computes a member of any non-empty Π0
1 class such that every member is

{0, 1}-valued DNR.
We then define σs = σ. Then define js so that [Λjs ] is the set of all C ∈

[
Λjs−1

]
which extends σ.
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The fact that B computes A follows from the fact that an oracle for B allows us to retrace every
step of the construction defining B.

This proves the first part. Now to show that there are two members of the same degree, suppose
that P = [Λ] is a Π0

1 class, for some downward closed computable set of strings Λ, such that P contains
only {0, 1}-valued DNR functions. We take two incompatible strings σ0 and σ1 in Λ. Now since every
member of the set of all infinite branches above σ0 and σ1 is {0, 1}-valued DNR, they both contain a
member of every PA degree by the previous part. Hence, they contain members of the same degree
and therefore so does P. □

Corollary 21. CI− I is non-empty. Moreover, p is not a subset of the degree spectrum of any Π0
1

choice class.

Proof. It follows from Lemma 4.4 and Theorem 4.5 that hyperimmune-free PA degrees are choice
invisible but not invisible. □

4.1 Random sets and Π0
1 choice classes

Definition 22. A class P ⊂ 2ω is of Σ0
1-measure zero if there is a computably enumerable sequence of

Σ0
1 classes B0,B1, . . . such that ∀n(µ(Bn) < 2−n) and P ⊂

∩
n∈ω Bn. A set B ⊂ ω is called 1-random

(Martin-Löf random) if the class {B} is not of Σ0
1-measure zero.

Although Π0
1 choice classes can contain a member of PA degree, we argue that 1-random sets are

too “computationally related” to be a member of a Π0
1 choice class. The following result can be found

in [14].

Theorem 23 (Kautz, 1991). If a Π0
1 class contains a 1-random set, then it is of positive measure.

The next theorem was shown by Kučera [17].

Theorem 24 (Kučera, 1985). If a Π0
1 class is of positive measure then it contains a member of every

1-random degree.

The following result shows that Π0
1 choice classes do not contain random sets.

Theorem 25. No Π0
1 choice class contains a 1-random set.

Proof. Suppose that a Π0
1 class P = [Λ], for some downward closed computable set of strings Λ,

contains a 1-random set. Then P must contain a member of every 1-random degree. Let A,B ∈ P
be two 1-random sets of different degrees. Similar to Theorem 4.5, let σ0 ⊂ A and σ1 ⊂ B be two
incompatible strings in Λ. Since A ∈ [σ0] and B ∈ [σ1], both [σ0] and [σ1] contain members of every
1-random degree. Therefore, P must contain members of the same degree. □

References

[1] S. Binns and S. G. Simpson, Embeddings into the Medvedev and Muchnik Lattices of Π0
1 classes.

Archive for Mathematical Logic, Vol. 43, pp. 399-414 (2004).

[2] D. Cenzer, Π0
1 Classes in Recursion Theory. Handbook of Computability Theory. North-Holland,

Studies in Logic and the Foundations of Mathematics Vol. 140, pp. 37-89 (1999).

[3] D. Cenzer and F. Riazati, Minimal extensions of Π0
1 classes. Mathematical Logic Quarterly, Vol.

51, pp. 206-216 (2005).

[4] D. Cenzer and R. L. Smith, On the ranked points of a Π0
1 set. Journal of Symbolic Logic, Vol.

54, pp. 975-991 (1989).

12



[5] J. A. Cole and S. G. Simpson, Mass problems and hyperarithmeticity. J. Math. Log., Vol. 7, pp.
125-143 (2007).

[6] S. B. Cooper, Computability theory. Chapman & Hall, CRC Press, Boca Raton, FL, New York,
London (2004).
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