
Recursion Theory Lecture Notes
(Draft)

Ahmet Çevik

1 Background and origins

The goal of science is to make the algorithmic content of the world about us
mathematically explicit. The tool we use to exploit the “principles” of the universe is
the scientific method and reducing complex information to a simpler phenomenon. We
seek patterns in the nature and observe fractal-like, spiral-like objects. We see objects,
for example trees, and abstract them through their common properties. We solve a
problem by reducing it to elements that are already known as an information.
Mathematical information in particular may or may not have a structural content.
Consider two infinite binary sequences

A : 0101010101010101 . . .
B : 0100010101001110 . . .

Now A seems to be more “structured” than B. In other words, B looks more “random”
than A. This is because of the fact that the digits of A are periodic. It is an alternating
0-1 sequence. We can explain the information of A by an explanation simpler than A.
However, if a sequence is random then we need at least n bits of axioms in order to
determine its first n bits.

Theoretical limits of algorithmic information also determine the limits of
computability. So then what are the theoretical obstacles to effective methods? What
are the limits of solvability and decidability? What is unsolvable? These questions are
investigated in a branch of mathematical logic called recursion theory, which is
originated from the study of recursive (i.e., computable) functions.1 One of its main
aims is to study the algorithmic relationship between incomputable sets, functions, and
relations. The term computable refers to “algorithmically computable”.2 We then must
define what is meant by algorithmically computable.

The notion of “algorithm” or “effective computation” has been used throughout the
history of mathematics. Euclid’s algorithm for finding the greatest common divisor of given
two natural numbers is known to be one of the first algorithms. The word “algorithm”
was not used until the 9th century Persian mathematician al-Khwarizmi, from whom the
term originates. In Latin, it was called “algorismus” when his works translated before
the 12th century. Finally, the word “algorithm” was adopted in the 19th century English
speaking world.

1Recursion theory is contemporarily called computability theory by many mathematical logicians. We
will adopt both and use them interchangeably. For further reading on the computability and recursion
terminology, see Soare (2016), Turing Computability, pp. 245-247.

2The term algorithmically computable is also known as effectively computable.

1

Here are some examples to algorithms:

• Finding the greatest common divisor of two natural numbers.

• Finding the prime factors of a positive integer.

• Sorting an unsorted finite list of numbers.

• Matrix multiplication.

• Finding the shortest path between two vertices in a graph.

• And many others...

What about things that cannot be an algorithm?

• Procedures whose description is infinite. For example,

(1) Let x be the smallest prime number;

(2) Add x with the least even number greater than 10;

(3) Subtract the result of step 2 from the xth digit of π;

(4)...

(5)...

We may allow loops in algorithms as long as its description is finite. For example,

(1) Let x = 1;

(2) Add x with the greatest prime number less than 100;

(3) increment x by 1;

(4) Go back to stage 2.

• Procedures that are not well-defined. For example,

Let x be the coolest positive number smaller than 10.

• Procedures that cannot be completed in a finite amount of time. For instance,

(1) Let n = 0;

(2) If the number π contains three consecutive 7’s in its decimal expansion, then let
x = n+ 1, otherwise let x = n.

Although Pascal invented the first calculator in the 16th century (and later improved
as a general purpose machine by Charles Babbage in the 19th century), the concept of
computation was profoundly used by Leibniz, who believed that principles of reasoning
could be rigourously reduced to a formal symbolic system, a calculus of thought. He called
this the universal language (characteristica universalis) in which, he believed, when a
dispute arises, one just needs to calculate to find the solution.3

3Essentially, the very idea of reducing the knowledge about the reality into a structure of order goes
back to Pythagoreanism, but we will not discuss this further.

2

Gottlob Frege was the first person who laid the foundations of formal logic since
Aristotle. In his Begriffsschrift, Frege put Leibniz’s idea into practice by introducing a
system of logic, and improved this system in his later works.

Where does the concept of ‘recursion’ come into play? The term recursion, up until
the early 1930’s, meant ‘defined by induction’. Roughly speaking, recursion is a process
that calls itself using its sub-components as arguments. Best known example would be
the definition of Fibonacci sequence:

F0 = 0; F1 = 1; For n > 1, Fn = Fn−1 + Fn−2.

The characterization of recursion as a function type goes back to 19th century. For
example, the recursive definition of addition and multiplication were provided by
Grassmann (1861) and Peirce (1881) as

(i) x+ 0 = x
(ii) x+ (y + 1) = (x+ y) + 1

(i) x× 0 = 0
(ii) x× (y + 1) = (x× y) + x.

Dedekind (1888) showed that functions of this kind, defined in a recursive manner,
constitute a unique class of functions. Peano (1889) then used Dedekind’s definitions in
axiomatizing arithmetic.

1.1 The foundational crisis of mathematics and Incompleteness.

Effective computability was never studied mathematically until the golden age of
mathematical logic in the early 20th century mathematics. This was due to that an
algorithm was considered to be a meta-mathematical object rather than a mathematical
entity like a function, number, sequence, etc.4 The urge to define what effective
computability is came from the foundational crisis of mathematics. The crisis emerged
from the debates about naive set theory. It was thought in naive set theory that for any
property ϕ(x) about sets,

A = {x : ϕ(x)}
would define a legitimate set.5 This assumption was known as the Axiom of Unrestricted
Comprehension, which later turned out to be false. Russell noticed in Frege’s system that
when one invokes this axiom in naive set theory and use Frege’s abstraction principle,
Basic Law V, it leads to a paradox. The paradox can be told as a story about a librarian
compiling a catalogue of books. But let us instead look at the problem in terms of sets.
Consider the formula x 6∈ x. We ask if

R = {x : x 6∈ x}

is a set. The answer is no. Because if R is a set, then either R ∈ R or R 6∈ R. But if
R ∈ R, then by its own definition, it cannot be in itself since it only contains sets which

4Same thing for the notion of proof.
5When we say a property, we mean any formula written in the language of set theory, that is, any

predicate defined in the language of sets using the logical symbols and the membership ∈ symbol.

3

are not members of themselves. However, if R 6∈ R, then R satisfies property x 6∈ x, so
in this case it must be that R ∈ R. In either case, we get a contradiction. This is called
Russell’s paradox. The paradox caused a serious crisis in mathematics at a foundational
level.

In the early 20th century, Hilbert had the idea of practicing mathematics using only
“finitiary” arithmetic, referring to statements which use bounded quantifiers, proving facts
with using such methods, etc. Of course, it wasn’t really clear back then what was meant
by “finitistic”. In 1900, at the first International Congress of Mathematicians, Hilbert
proposed 23 problems of mathematics which he hoped they would be solved until the
end of millenium. The project emerged two themes: Computability theme and provability
theme. In the computability theme, 10th problem was to find an algorithm to solve a given
diophantine equation with integer coefficients. As a similar problem, in 1928, Hilbert and
Ackermann introduced the Entscheidungsproblem, the problem of deciding whether or not
the given first-order formula in the language of arithmetic is valid.

As for the provability theme, Hilbert proposed a long-term project for formalizing
mathematics to achieve all mathematical knowledge in a complete and consistent set of
axioms. A formal axiomatic system consists of a formal language, set of axioms, and
rules of deduction. Hilbertian formal axiomatic system was expected to be consistent,
complete, and decidable. But what is the use of such formal axiomatic system? If one
could construct such theory, one would be able to do the following tasks.

1. Enumerating all possible sentences in the language of that theory.

2. Grammar checking. That is, deciding whether or not a given sentence is syntactically
correct in the language of the theory.

3. Proof checking. Deciding whether or not a given proof is correct.

4. Effectively decide whether or not a statement has a proof.

In 1923, Skolem invented a formal system of arithmetic based on Hilbert’s idea of
finitary arithmetic using only the recursive definition of multiplication. Skolem’s work
was significant for three reasons:

1. Recursive functions are associated with effective computability for the first time.

2. Skolem talks about functions which are recursive (that is, computable) in the
‘primitive’ sense.

3. It was observed that these functions constitute a large part of ordinary mathematical
functions.

Hilbert had the idea of defining a formal system for “all” of mathematics. Hilbert
also wished to prove the consistency of arithmetic within the theory of arithmetic. He
gave the famous radio address in 1930 announcing that there is nothing undecidable in
mathematics, that questions for which we don’t know the answer yet, will be answered
in the future. Shortly after this radio address, Kurt Gödel proved a remarkable theorem

4

that there exist formally undecidable statements in arithmetic. He showed that there is
a statement in formal arithmetic which is neither provable nor disprovable. He produced
the liar-like sentence in formal arithmetic “This statement is false”. Now if we can prove
such a sentence in our formal system, then our system would prove something false and
so the system will be inconsistent. But if not, then our system turns out to be incomplete,
for that we have a true yet an unprovable statement.

Gödel numbering

Of course Gödel proved the existence of the foregoing self-referential statement in
formal arithmetic. So we need to translate the self-referential statement “I am
unprovable” into a sentence about numbers. We have to associate expressions of
arithmetic with sentences of a formal axiomatic system if we want our system to be
about numbers. We can encode every sentence by a natural number. For this we assign
each symbol in the formal language to a code number and then obtain, in the end, a
special code number for each sentence, and vice versa.

Consider Peano Arithmetic (PA) for our formal system. The language of PA, apart
from the logical symbols, consists of the constant symbol 0, the successor function S,
binary function symbols +,× and a binary relation symbol <. We also have possibly
infinitely many x, y, z, . . . variable symbols. To capture the natural numbers greater than
0 we of course apply the successor function a number of times. For instance in the language
of PA, we shall express 2 as SS0, or 3 as SSS0. Axioms of PA are as follows.

(i) 0 is a natural number.

(ii) For every natural number x, Sx is a natural number.

(iii) ∀x∀y(Sx = Sy → x = y).

(iv) ∀x¬(0 = Sx).

(v) (Axiom Schema of Induction): {ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x). Here the x
variable in ϕ(x) is free. That is, x is not bounded by any quantifier.

Axiom Schema of Induction consists of infinitely many instances. It is a kind of general
form for each formula ϕ. Let us now code the symbols in the language of PA as follows.
The table below is just an example, as the order can be changed.

¬ ∧ ∨ → ⇐⇒ ∀ ∃ = () 0 S + × <
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

x y z . . .
2 4 6

It is possible to write countable infinitely many sentences using the language of PA.
Some may be syntactically correct, some may be wrong. For example, ∀x∃y(Sx = y)
is a syntactically correct sentences. Similarly, 1 + 1 = 1 is as well, although not sound.
However, +1 <= 0 is not a well-formed formula even though all symbols belong to the
language of PA. It is easy to determine whether or not a given expression is a syntactically
correct formula of PA. That is, grammar checking is straightforward. So we can separate
well-formed formulas of PA from others.

5

We now assign a unique number to expressions which are formed by the symbols in
the language of PA. Let e be an expression of the form s0s1s2 · · · sk containing k+1 many
symbols. Let πi denote the i-th prime number. The Gödel number of e is

πc00 · π
c1
1 · π

c2
2 · . . . · π

ck
k

where ci is the code of si. For instance the Gödel number of the expression S0 is 223 · 321.
Let us consider the formula ∃y(S0 + y) = SS0. This formula is syntactically correct and
it actually means, under the standard interpretation, that there is a number, when added
1, equals to 2. The Gödel number of this formula is a massive number like

213 · 34 · 517 · 723 · 1121 · 1325 · 174 · 1919 · 2315 · 2923 · 3123 · 3721

It is worth noting that for each sentence there is a unique Gödel code, and vice versa.
That means, we can both compute the Gödel code of a given expression, and decode
the Gödel code to obtain the corresponding expression. The uniqueness of this bijection
is provided by the Fundamental Theorem of Arithmetic: Every integer greater than 1 is
either prime itself or is the product of prime numbers, and that this product is unique,
up to the order of the factor. Now that we coded the sentences of PA, it is possible to list
them in a uniform way. The idea of listing expressions is essential in mathematical logic.
We will use the same idea for listing algorithms.

Since we managed to code sentences, now we are interested in expressing their truth
values via arithmetical relations. Given a formal language, consider the property of being
a formula in that formal language. We shall define a relation for determining whether a
given sentence is in fact a syntactically correct statement and denote it by Formula(n).
We say that Formula(n) is true if and only if the number n codes a Gödel number for a
syntactically correct sentence, i.e. a formula.

Apart from coding sentences, one can also code proofs. Formally speaking, a proof is
a finite sequence of statements. If we can code every statement of the proof, then we can
also code the proof itself following the same method of Gödel numbering, providing the
prime numbers once again as the bases of exponents. Consider a sequence of statements
e0, e1, e2, . . . , en. Suppose that this sequence constitutes a valid proof, meaning that every
ei is either an axiom or follows from at least one ej such that j < i. To define the Gödel
number of the proof

((e0 ∧ e1 ∧ · · · ∧ en−1)→ en)

we first find the Gödel number of each statement ei. Recall that in first-order logic, the
inference e0, e1, · · · , en−1 ∴ en is valid iff the sentence ((e0 ∧ e1 ∧ . . . ∧ en−1) → en) is a
tautology.

Let us denote the Gödel number of ei by gi. We then define the Gödel number of the
proof as

πg00 · π
g1
1 · π

g2
2 · . . . · πgnn

Now we can define a binary relation Prf(m,n). We say that Prf(m,n) is true if and only
if the expression with the Gödel number m is a proof of the statement with the Gödel
number n.

6

Primitive recursive functions.
We need to ensure that the relations we have defined so far are effectively capturable

inside Peano arithmetic, by which we mean the expressibility of predicates like Formula,
Prf, and so on. This is where we need the concept of computability. For these predicates
to be effectively captured inside our formal system, they should conform to Hilbert’s
finitary arithmetic. Functions we use in ordinary mathematics, such as addition,
multiplication, exponentiation, the successor function, absolute value function, etc., are
all fundamental to our mathematical studies. These simple functions are all calculable in
the sense of Hilbert’s finitary methods. In other words, they are all algorithmically
computable. Moreover, they describe the simplest type of computability as they are all
straightforwardly computable in a finite number of steps and that we are guaranteed to
produce a result for any given argument. We will refer to such functions as primitive
recursive functions. More formally, we define primitive recursive functions inductively as
follows.

Definition 1. 1. The initial functions (a) - (c) are primitive recursive.

(a) The zero function is defined by

0(n) = 0, ∀n ∈ N,

(b) The successor function is defined by

n′ = n+ 1, ∀n ∈ N,

(c) The projection functions Uki is defined by

Uki (~m) = mi, for each i = 1, . . . , k and k ≥ 1 (where we write
~m = m1, . . . ,mk).

2. If g, h, h0, . . . , hl are primitive recursive, then so is f obtained from g, h, h0, . . . , hl
by one of the rules:

(a) Substitution, given by:

f(~m) = g(h0(~m), . . . , hl(~m)),

(b) Primitive recursion, given by:

f(~m, 0) = g(~m),

f(~m, n+ 1) = h(~m, n, f(~m, n)).

The smallest class of functions which satisfy the definition is called primitive recursive
functions. Many functions in ordinary mathematics is primitive recursive.

Example 1. We can show that + operation is primitive recursive. This is justified by
the primitive recursion rule. That is,

m+ 0 = m,
m+ (n+ 1) = (m+ n) + 1 = (m+ n)′.

Example 2. Multiplication operator × is primitive recursive.
Follows from the primitive recursion scheme:

7

m× 0 = 0;
m× (n+ 1) = (m× n) +m.

Exercise 1. Show that the exponentiation function is primitive recursive.

Example 3. Show that the predecessor function defined by

δ(m) =

{
m− 1 if m > 0
0 if m = 0.

is primitive recursive.

It follows directly from the primitive recursive scheme
δ(0) = 0,
δ(m+ 1) = m

Example 4. Show that the recursive difference defined by

m−̇n =

{
m− n if m ≥ n
0 if m < n.

is primitive recursive.

The primitive recursive scheme

m−̇0 = m,
m−̇(n+ 1) = δ(m−̇n),

together with the previous example gives the result.

Example 5 (Bounded sums). If f(~m, n) is primitive recursive, then
h(~m, p) =

∑
n≤p f(~m, n) is primitive recursive.

Using the primitive recursive scheme,

h(~m, 0) = f(~m, 0);
h(~m, p+ 1) =

∑
n≤p f(~m, n) + f(~m, p+ 1)

= h(~m, p) + f(~m, p+ 1)

uses functions already known to be primitive recursive.

Exercise 2. Show that bounded product is primitive recursive.

Gödel proved that the predicates such as Formula, Prf, and a couple of other relations,
are primitive recursive. The fact that these predicates are primitive recursive allows us to
define the paradoxical Gödelian statement primitive recursively inside Peano arithmetic.
For Gödel’s theorems we give two propositions for which we shall omit the proof. But first
we give a definition. We will revisit this definition later on when we define ‘computability’
more rigorously.

8

Definition 2. Let A ⊆ N be a set of natural numbers. If there exists an algorithm that
determines whether or not n ∈ A for any given n ∈ N, then A is called a recursive (or
computable) set.6

Theorem 1. For any computable set A, there exists a formula ϕ(x) in the language of
PA such that

n ∈ A if and only if ϕ(n)

The n in the formula ϕ(n) is of course described in the language of PA by repeatedly
applying the successor function symbol S on the constant symbol 0, e.g., S · · ·S0. The
reader should understand that any natural number is representated in the formal language
of PA in this form. The theorem given above tells us that every computable set is captured
by a formula in Peano arithmetic. Another required theorem is as follows.

Theorem 2. Every primitive recursive function is captured in PA. That is, if f : N→ N
is a primitive recursive function, then there exists a formula ϕ(x, y) such that

ϕ(n, y) if and only if f(n) = y

for every n ∈ N.

Similar theorem also holds for n-ary relations. So all primitive recursive functions and
relations can be captured in PA. In particular, the relations that Gödel used such as
Formula, Prf, and Diag, which we will mention shortly, are all captured in PA.

Diagonalisation.
The next step of the theorem is to express the Gödealian sentence “This statement is

unprovable” in the language of PA. For this we use a well known method called
diagonalisation. Essentially, it is very similar to Cantor’s method in proving that the set
R of real numbers is uncountable. Suppose now that ϕ(x) is a formula where x denotes
the free variable of ϕ. Then, there is a Gödel number of this formula. Let us denote the
Gödel number of ϕ by ϕ. The diagonalisation method is the step where we substitute
the Gödel number of ϕ into the free variable of ϕ. That is, the diagonalisation of ϕ(x)
will produce the formula ϕ(ϕ). The reason that we can in fact produce this relies on the
Diagonal Lemma we give below. Let us use the notation PA ` ϕ to mean “ϕ is provable
from PA”.

Lemma 1 (Diagonal Lemma). Suppose that ψ(x) is a formula in the language of PA.
Then, there exists a formula ϕ such that

PA ` ϕ⇐⇒ ψ(ϕ).

Proof (Proof 1). Let Diag(ϕ(x)) := ϕ(ϕ(x)) be the diagonal function. Now this function
is primitive recursive and so PA captures this function. Because it is a primitive recursive
process to find the Gödel number of a given formula, and the inverse process. Secondly,
substituting the Gödel number of a formula into the free variable is also primitive recursive

6The terms “computable”, “recursive”, “decidable” have the same meaning for sets as they can be
used interchangably. For functions, we use “computable” or “recursive” rather than using the word
“decidable”.

9

by definition. Now this function maps the Gödel number of a formula with one free variable
to the Gödel number of a sentence whose free variable is substituted by its own Gödel
number. That is, from the formula ϕ(x) we obtain the sentence ϕ(ϕ). Then it suffices to
define ϕ = ψ(Diag(ψ(Diag(x)))). Then, in this case ϕ = ψ(ϕ). Because when we compute
the outward Diagonal function above, by the definition of Diag, we get the Gödel code of
ϕ.

Proof (Proof 2). Let f : N→ N be the diagonalization function which maps the number

φ(x) to the number φ(φ(x)) and maps the rest of the elements in the domain to 0. As
given above, f is a primitive recursive function. Then, the function f can be captured in
PA, that is, for every n ∈ N there exists a formula θ(x, y) such that

PA ` θ(n, y)⇐⇒ f(n) = y.

Now let us define χ(x) := ∃y (θ(x, y) ∧ ψ(y)) and let ϕ be the formula χ(χ(x)). This
completes the proof of the lemma.

Now we will use the Diagonal Lemma to prove the First Incompleteness Theorem. It
is inevitable that we omit some technical details in the proof, as Gödel’s Incompleteness
Theorem is normally taught as a one semester course when fully covered.

Originally, Gödel proved his theorem relying on a stronger assumption than what is
actually sufficient. But we will see shortly that this does not change the presentation we
give here.

Definition 3. Let T be a formal system. If for some formula ϕ in the language of T ,
the axioms of T separately proves each of the statements ϕ(0), ϕ(1), ϕ(2), . . ., but T also
proves ∃x¬ϕ(x), then T is called ω-inconsistent. If a system is not ω-inconsistent, then
it is called ω-consistent.

Every inconsistent system is, by definition, ω-inconsistent. Also, every ω-consistent
system is consistent, but not every consistent system needs to be ω-consistent.

We begin with using the Diagonal Lemma. Let us first consider the formula
∀y ¬Prf(y, x). Call the Gödel number of this formula m. This formula tells us that the
formula whose Gödel number is x has no proof. Now let us diagonalise this formula and
obtain the following sentence G.

G := ∀y ¬Prf(y,m).

We have just obtained the desired paradoxical statement. G says that G has no proof.
For reductio, suppose that G is provable. Let us denote the Gödel number of the proof
by n. Then, Prf(n,m) must be true. Since we assumed that G was provable, we should
be able to prove the statement ∀y ¬Prf(y,m). Since it holds for every y, it turns out that,
in particular, ¬Prf(n,m) is provable, which is a contradiction.

Let us now suppose that ¬G is provable. If PA is ω-consistent, then ∃yPrf(y,m) is
provable from PA. In this case, for some n, Prf(n,m) is provable. But this gives us the
proof of G, which is again a contradiction. Therefore, if PA is ω-consistent, we can neither
prove G nor ¬G. This proves Gödel’s First Incompleteness Theorem.

Barkley Rosser [?] managed to reduce the ω-consistency in the hypothesis of the
theorem to plain consistency. Hence, Gödel’s First Incompleteness Theorem can be stated
as follows.

10

Theorem 3 (Gödel’s First Incompleteness Theorem). If PA is consistent, then it is not
complete.

Are there natural examples of true mathematical statements which are not provable
in PA or ZFC? We known that the Continuum Hypothesis cannot be settled in ZFC.
As for PA, Goodstein’s Theorem is one of the oldest theorems unprovable in PA. For a
nice proof of its independence, see Adam Cichon’s (1983) paper in the Proceedings of
American Mathematical Society.

Goodstein’s process is described as follows. Given a natural number N :

1. Write it in base x, i.e., write N as a sum of powers of x, and then the exponents
also, the exponents of exponents, etc.

2. Increase the base of the representation by 1, then

3. Subtract 1 from the new number thus obtained.

4. Repeat the procedure 1-3, successively increasing the base by 1 and subtracting 1.

Example 6. For x = 2, N = 25, we get step 1:

25 = 22
21

+ 22
1+20 + 20.

Then in step 2 we change the base to 3, which yields 33
31

+ 33
1+30 + 30. And in step 3

we subtract 1 from this number, which gives us 33
3

+ 33+1 = 7625597485068.

The process is said to terminate if the number 0 is eventually reached. Goodstein’s
Theorem says every Goodstein process terminates. It was shown by Kirby and Paris
(1982) that this cannot be proved in PA (yet it is provable in ZFC).

Second Incompleteness Theorem
Next is to show that sufficiently strong formal systems cannot prove their own

consistency. As a matter of fact, this is a consequence of the First Incompleteness
Theorem. Define Prov(n) := ∃mPrf(m,n). That is, Prov(n) holds if and only if the
statement with Gödel number n is provable. We consider PA as our basis system. PA is
a sufficiently strong system.7 We may restate the First Incompleteness Theorem as

7Now that the predicate Prov has been defined, it is worth discussing what is meant by a sufficiently
strong system. The criterion is that the system must be able to prove every true predicate which is,
computability-wise, on a par with Prov. In computability theory, predicates that alike Prov have a
special place. Gödel’s theorems rely on two basic assumptions: (i) The first-order theory in consideration
is expected to be ω-consistent (or consistent), (ii) if R is a primitive recursive function/relation, any
statement of the form ∃xR(x) is expected to be provable within the system whenever it is true. We call
statements of the form ∃xR(x), in recursion theory, Σ0

1 statements. Now if (i) is not satisfied, then our
system will simply be inconsistent. So, by ex falso rule, anything can be proved, hence the system would
be complete in the way that we do not want. If (ii) is not satisfied on the other hand, since the system
will not be able to capture the notion of provability, there is no point in talking about the “provability”
of G. It only makes sense when the system understands what provability is. Consider a system T which
is not sufficiently strong, for example any axiomatic system in propositional logic. Since no predicate on
a par with Prov can be captured in T , the unprovability of G does not concern T . In fact, asking if G
is provable within T would be non-sensical, similar to as we cannot speak about the truth of falsity of
something when the system does not understand what the truth conditions are. Hence, sufficiently strong
system means, in this context, that the system is able to prove every true Σ0

1 statement. We call such
systems Σ0

1-complete. So we say that a system is sufficiently strong if and only if it is Σ0
1-complete.

11

PA ` G⇐⇒ ¬Prov(G).

We assume, of course, that PA is consistent. That is, we have PA 6` ⊥, where ⊥ denotes
a contradiction. Now let us define ConPA := ¬Prov(⊥). Then, ConPA indirectly states
that PA is consistent. Recall that the First Incompleteness Theorem says that if PA is
consistent, then G is unprovable in PA. That is, ConPA → ¬Prov(G). In fact, we have

PA ` ConPA → ¬Prov(G) (*)

Moreover, in PA, we can prove

PA ` G⇐⇒ ¬Prov(G) (†)
For reductio, suppose that PA ` ConPA. Then, given that (*) holds, we get
PA ` ¬Prov(G). However, (†) says that ¬Prov(G) and G are in fact provably equivalent
in PA. That is to say, one can be derived from the other. Hence, we have PA ` G. But
this contradicts the First Incompleteness Theorem and so our assumption must be false.
We may then state the second theorem as follows.

Theorem 4 (Gödel’s Second Incompleteness Theorem). If PA is consistent, then PA
cannot prove its own consistency.

Gödel’s theorems are not limited to PA but they apply to any sufficiently strong
system. As an immediate reaction so as to try to deny the theorem, even though it is
futile, one may try to add G as an axiom to our formal system. Unfortunately this does
not solve the problem. Even if we add G to our system, we automatically get a stronger
system to which the theorem applies. We can again uniformly find another true-but-
unprovable statement in this new system. No matter how large our set of axioms gets, we
will never be able to avoid the incompleteness phenomenon. In some sense, not only did
Gödel prove that sufficiently strong systems are incomplete, but he also proved that they
are “incompletable”.

One application of the Diagonal Lemma is Tarski’s result on the Undefinability of
Truth [?]. If M is a “structure” and ϕ is a statement which is “true” in M , then we
denote this by M |= ϕ. Let us give a simple example to understand what we mean.
Consider the statement

∀x∃y (y < x).

The statement above is false in the natural number “structure” due to the fact that there
is no number in N strictly smaller than 0. On the other hand, the statement

∀x∃y (x < y)

is true in N since for every number in N, there exists a larger number. We now give
Tarski’s theorem of the undefinability of truth.

Theorem 5 (Undefinability of Truth). Let T = {ϕ : N |= ϕ} be a set of natural
numbers. Then, there exists no formula ψ(x), in the language of arithmetic, such that
n ∈ T ⇐⇒ N |= ψ(n).

Proof. Suppose the contrary that there exists some formula ψ(x) satisfying the condition
of the theorem. From the Diagonal Lemma, it follows that there exists a formula ϕ such
that PA proves the sentence

12

ϕ⇐⇒ ¬ψ(ϕ).

Then, N |= ϕ if and only if N |= ¬ψ(ϕ) if and only if N |= ¬ϕ. A contradiction.

Gödel’s theorems should not be misinterpreted. The theorem does not say the
followings.

(i) Mathematics cannot be formalised. (False)

Which fragment and what kind of mathematics do we refer to? It depends on
whether we mean ordinary mathematics or “true” mathematics. Ordinary
mathematics can be formalised, as ZFC set theory is a clear example of this
formalisation. If we mean formalising “true” mathematics, then it will be
chimerical. This is due to the fact that the self-referential Gödelian statement,
uniformly obtained within the system, is a true arithmetical statement and that
we should accept it as a part of the mathematical truth. What “has been proved”
can be formalised, yet what is “being proved” or even “yet to be proved” cannot.

(ii) No formal system can be complete and consistent at the same time. (False)

Gödel’s theorems do not apply to every formal system. For example, systems that
are not Σ0

1-complete (see footnote 7) can be simultaneously complete and
consistent since such systems do not capture the Prov predicate, which is strong
enough to compute all recursively enumerable predicates. An example of a
complete and consistent system is the theory of dense linear orders without
endpoints.8

(iii) Mathematics is inconsistent. (False)

The incompleteness theorem does not show that mathematics is inconsistent. It
merely says that sufficiently strong consistent formal systems cannot prove their
own consistency. This is not to say that our system is inconsistent. If it is consistent,
however, this very fact cannot be proved within the system. Consider, for example,
ZFC set theory. If ZFC is consistent, then its consistency cannot be proved within
ZFC. Consider however a stronger system, call it ZFC+. Now if ZFC+ is consistent,
it can prove the consistency of ZFC. But then the consistency of ZFC+ cannot be
proved within the same system. No matter how much we enlarge our system, a
sufficiently strong system cannot prove its own consistency. This implies that it is
impossible to prove absolute consistency results, but we can merely prove relative
consistency, assuming the consistency of stronger systems.

(iv) Gödel’s incompleteness theorem is false and not accepted by the mathematical
community. (False)

The incompleteness theorem is in fact a legitimate theorem of mathematics. The
only way to reject the incompleteness phenomenon is by denying the rules of classical
logic. Although there may be mathematicians, particularly among non-logicians,
who have not heard about the incompleteness phenomenon, those who know usually
accept Gödel’s theorems.

8See Hedman [?], §5.5, 2004.

13

2 Turing machines and Recursively Enumerable Sets

In the last section we defined the class of primitive recursive functions to potentially
capture the intuitive notion of effective computability. However, we will show that
primitive recursive functions are not suffcient to fully express what is intuitively
‘computable’ for reasons that will become clear in this section.

A ‘computable’ function which is not primitive recursive.
Although primitive recursive functions can express many arithmetical operations used

in mathematics, it is not rich enough to capture all intuitively computable functions.

Theorem 6. There exists a computable function which is not primitive recursive.

Proof. When using primitive recursive functions, each derivation can be thought of as a
finite string since it is a finite piece of information. Hence, we can effectively enumerate all
primitive recursive functions. For this we use Gödel numbering which is standard method
in logic for effectively enumerating a set of finite mathematical structures. Let fn denote
the n-th primitive recursive function. We define g(x) = fx(x) + 1. We can deduce that g
is a computable function but not primitive recursive since g 6= fx for all x. �

This argument is called diagonalization and is a widely used technique in recursion
theory.

The Ackermann function is a concrete example of a recursive function but which is
not primitive recursive. The Ackermann function is defined as:

A(x, y) =

 y + 1 if x = 0
A(x− 1, 1) if y = 0.
A(x− 1, A(x, y − 1)) if otherwise.

A common property of recursive functions that aren’t primitive recursive is that they
diagonalize against all primitive recursive functions. This is actually determined by how
quickly the function grows compared to primitive recursive functions.

Definition 4. Let f and g be two functions from N to N.

1. We say that g dominates f if for some n0 ∈ N

n > n0 → g(n) > f(n).

2. If S is a set of functions, we say that g dominates S if g dominates f for every
f ∈ S.

An important fact to keep in mind is that if g dominates S, then g 6∈ S. We’ll study
the domination properties when we look at high and low sets in the later sections. But
the point being here about the Ackermann function is that it dominates every primitive
recursive function since it is ‘superexponential’, i.e. it grows faster than any exponential
function.

14

A function is called total if it is defined on every argument. Otherwise, it is called
partial. In fact, we must also take into consideration non-halting effective computations
since they may still produce some important information during their computations. Non-
halting effective computations have the nature of partial functions, i.e. functions that may
be undefined on some arguments, because we may not be able to produce a final output
for an arbitrarily given argument. For example, let ψ(x) = µy [p(x, y) = 0] be a function,
where p(x, y) is some polynomial with integer coefficients and where µxP (x) denotes
“the least x such that P (x) for some property P (x)”. Then, ψ may be undefined for some
values of x depending on the polynomial.

Now note that diagonalization method for partial recursive functions fails since f(x)
may be undefined for a partial function f . So we should consider partial functions for
defining the intuitive notion of effective computability, for algorithms may not be defined
on every argument as in the polynomial example we gave earlier.9

There have been different models of computation proposed which are believed to
capture the class of intuitively computable functions. Kurt Gödel was the first logician who
formally introduced general recursive functions in 1934 during his lectures at Princeton
University. On the other hand, Alonzo Church [?] introduced his lambda calculus as a
model of computation. Kleene, on the other hand, introduced µ-recursion to capture a
larger class of computable functions. When we add the following rule to the class of
primitive recursive functions, we obtain the class of µ-recursive functions.

Definition 5 (µ-operator). Let f(x) ↓ denote that f(x) is defined. If g(~n,m) is a partial
recursive function, then so is f given by

f(~n) = µm[g(~n,m) = 0],

where µm[g(~n,m) = 0] = m0 ⇐⇒ g(~n,m0) = 0 and for all m < m0, g(~n,m) ↓6= 0 .

So the µ-operator is a search operation. In fact, we have just expressed the search
operation in the polynomial example here. If there is a solution, we will find the least
such one. Otherwise, we will keep on searching unboundedly.

Turing machines
Alan Turing was perhaps the first person to describe a natural and universally accepted

model of computation, called Turing machine, which is believed to correctly capture
the notion of algorithmic computability. Turing machines were introduced in 1936 by
Alan Turing [?] with the intention of understanding the mechanical process of a ‘human
idealised computer’.

For Turing, a human idealized computer has the following properties:

• Turing proposed a number of simple operations “so elementary that it is not easy
to imagine them further subdivided”.

9Note that Hilbert’s tenth problem is, given a Diophantine equation with any number of unknown
quantities and with integral coefficients, devising a process according to which it can be determined in a
finite number of operations whether the equation is solvable in integers. This problem was shown to be
unsolvable by a collection of works by Davis, Matiyasevich, Putnam and Robinson [?].

15

• He divided the work space into squares and he assumed it’s one dimensional.

• He assumed finitely many symbols. Each square contains one symbol.

• He assumed finitely many internal states (of the human computer).

• The action of the machine is determined by the present state and the squares
observed.

• The reading head examines one symbol at a time.

• It is assumed that the tape head moves only one square in either direction.

First let us give some notions from formal language theory. An alphabet is a finite
set of symbols. A string is a finite sequence of symbols over some alphabet. Given two
strings w and u, wu denotes the concatenation of w and u. The length of a string w is
denoted by |w|. The empty string ε is the unique string of length 0. For any string w,
εw = wε = w. Given an alphabet Σ, Σk denotes the set of strings of length k over the
alphabet Σ. We denote the set of all strings over Σ by Σ∗. Note that since there is a one-
to-one correspondence between Σ∗ and N, in the end we will be concerned with functions
from N to N.

We now define an abstract model of computation called Turing machine which
basically consists of a control unit having finitely many states and an infinite tape on
which we write symbols and which moves around the tape cells. The control unit carries
the computation by following the given transition rules.

The formal definition is as follows.

Definition 6. A Turing machine M is a 5-tuple

(Q,Σ, δ, q0, qf)

such that Q is a finite non-empty set of states where q0 ∈ Q is the start state, qf ∈ Q
is the halting state, Σ is the alphabet, and δ is a partial function called the transition
function, which is defined as

δ : Q× Σ→ Q× Σ× {L,R}

such that L and R respective denote left (L) and right (R) movement of the tape head.
We may view δ as a set of quintuples. The interpretation is that if (q, a, q′, a′, X) ∈ δ,

then the machine M is in state q, reading the symbol a, and upon reading the symbol,
the machines changes to state q′, replaces a by a′, and moves the tape head one square to
the X direction. The map δ viewed as a finite set of quintuples is called a Turing program.

16

A configuration of a Turing machine is a triplet (x, q, y), where q ∈ Q, x, y ∈ Σ∗. We
interpret a given configuration as follows: If c = (x, q, y) is a configuration, we say that
the Turing machine is in state q, the tape contains the string xy, and the tape head is
reading the leftmost symbol of y. For convenience we may also write this configuration
as xqy. In fact, we will adopt the latter notation.

To describe how the computation is carried out, let us say x = w1a and y = a1w2

such that a, a1 ∈ Σ and w1, w2 ∈ Σ∗. Therefore, c can be written as w1aq1a1w2, and
the transition function δ may define a transition rule from one configuration to another
such that if δ(q1, a1) = (q2, a2, d) then a configuration c = w1aq1a1w2 is transformed to,
respectively for the left and right movement of the tape,

c′ = w1q2aa2w2 or c′ = w1aa2q2w2.

depending on which direction of the tape head moves d ∈ {L,R}.

If δ defines a transition from c to c′, then we say that c yields c′ and we denote this by
c ` c′. Every such yield defines a computational step. The two exceptional cases c = wq1ε
and c = εq1w can be handled by introducing the blank symbol # and so extending the
definition of δ and replacing wq1ε with wq1#, and replacing εq1w with #q1w.

A computation of a Turing machine with an input w ∈ Σ∗ is defined as a sequence of
configurations c0, c1, . . . such that c0 = εq0w and ci ` ci+1 for each i. We say that the
computation halts if the state symbol of some configuration ci is qf . In this case, we say
that the machine halts on argument w and the output is whatever is written on the tape.
We say that a Turing machine M computes a partial function ψ provided that ψ(x) = y
iff M with input x halts and yields output y. A function is Turing computable if there
exists a Turing machine which computes it.

Example. We begin with a simple example. Suppose we work with functions from
naturals to naturals, and assume we represent the number n by, say, n consecutive 1’s in
the tape. Let us define a Turing machine which computes the function f(x) = x + 2.
Given x, represented by x consecutive 1’s, we compute x+ 2 by putting two more 1’s to
the end of the input string. Hence, the Turing program could be something as follows:

(q0, 1, q0, 1, R)
(q0,#, q1, 1, R)
(q1,#, qf , 1, R)

The computation of the machine on input 3 is as follows.

q0111## ` 1q011## ` 11q01## ` 111q0## ` 1111q1# ` 11111qf

Example. Let us define a Turing machine, operating on finite binary strings, which
replaces the last ‘0’ in the input string (if there is any) with ‘1’.

The set of states can be put as Q = {qa, qf , q0, q1}. The alphabet is Σ = {0, 1}. Before
defining the transition function, let us describe how the machine will operate intuitively.

We begin by reading the leftmost symbol of the input string, starting with the initial
state q0. We keep moving to the right and if we, at any point, encounter with the character
‘0’, the machine will enter into a special ‘memorise’ stage qa to reverse the tape head back

17

after we finish reading the entire input. When the tape head reverses back we will change
the first encountered ‘0’ to ‘1’. If in state qa, we read the blank symbol, we reverse back
and find the first ‘0’. If without entering the state qa, we end up in state q0 after we finish
reading the string, it means we have no ‘0’ in the input. In this case we terminate the
computation. The Turing program then can be defined as follows.

(q0, 1, q0, 1, R), (q0, 0, qa, 0, R), (q0,#, qf ,#, S),
(qa,#, q1,#, L), (q1, 1, q1, 1, L), (q1, 0, qf , 1, S),
(qa, 1, qa, 1, R), (qa, 0, qa, 0, R).

Given n many inputs x1, . . . , xn, we represent them as an input to a Turing machine
by writing each as a block of xk consecutive 1’s and separating each block by the blank
symbol #.

Exercise 3. Write a Turing machine for each of the following functions.

1. f(x) = 0.

2. f(x) = 2x.

3. f(x, y) = x+ y.

Exercise 4. Define a Turing machine which takes a natural number in binary form and
returns its successor in binary.

There are other variants of Turing machines, such as multiple tape Turing machines,
one-way infinite tape Turing machines, non-deterministic Turing machines, probabilistic,
quantum Turing machines, and register machines. They all compute the same class of
functions. Hence, they are equivalent in computational power. One exception is linear
bounded machines, where the tape size is limited to input size. These machines compute a
smaller class of computable sets. There are also higher models which rely on computations
over transfinite ordinals or real numbers. But they are out of scope of this course. For
further reading we refer the reader to the book titled Hypercomputation: Computing
beyond the Church-Turing barrier by Apostolos Syropoulos, or Higher recursion theory by
Gerald Sacks. For a more computer scientific reference where you may find a discussion
on the comparison between different variants of Turing machines, see Elements of the
theory of computation by Lewis Papadimitriou.

An important remark we should make is that Turing machines and other models
proposed by Kleene, Church, and Gödel are all equivalent. But among all, Turing machines
are considered to be the most ‘natural’. Hence, we usually regard Turing machines as the
standard model of effective computability. The definition of effective computability relies
on the following thesis.

Church-Turing Thesis: The class of Turing computable functions is exactly the class
of effectively computable functions. That is,

Effective computability = Turing computability.

18

The hypothesis is not a mathematical statement because there is no mathematical
definition of what’s ‘effectively’ computable in the very general sense. On the other hand,
Turing machines are well-defined mathematical objects. Therefore, the Church-Turing
Thesis is a philosophical statement. From now on we will assume the Church-Turing
Thesis and take it as the definition of effective computability.

Definition 7. A function f : N→ N is called partial recursive if it is Turing computable.
If f is defined on every argument then f is total recursive (or simply recursive).

Sets can be represented by their membership characteristic.

Definition 8. Let S ⊆ N be any set. The characteristic function of S is given by

χS(x) =

{
1 if x ∈ S
0 if x 6∈ S.

We say that S is recursive (or computable) if χS is recursive.

Example 7. The following sets are recursive as we can describe, using the Church-Turing
Thesis, an effective procedure for computing them.

(i) The set of natural numbers.

(ii) The set of even numbers.

(iii) A = {i : i is a prime number}.

(iv) A = {(i, j) : i and j are relatively prime}.

(v) A = {i : ith digit in the decimal expansion of π is greater than 5}.

(vi) A = {n : n is the Gödel number of a propositional tautology}.

2.1 Basic results

Proposition 1. A set A is computable iff its complement, A is computable.

Proof. Since A is computable, we can decide whether or not n ∈ A for any n ∈ N. We
see if n ∈ A. If so, then n 6∈ A. Otherwise, n ∈ A. �

First basic theorem tells us that there exists an effective way of enumerating all Turing
machines (as Turing programs consist of finite sets of quintuples) and that there is a Turing
machine called the universal Turing machine (UTM) which can simulate any other Turing
machine.

Theorem 7 (Enumeration Theorem and Universal Machine). Using Gödel numbering,
there is an effective way of enumerating all partial recursive functions as ϕ1, ϕ2, ϕ3,
That is, from index e we can computably obtain the Turing machine for computing the
function ϕe. Using such a list, there exists a universal Turing machine which, for any
given pair (e, x) of natural numbers, simulates the e-th Turing machine on argument x.

Proof. If we define the universal Turing machine as ψ(e, x) = ϕe(x), then by Church-
Turing Thesis there exists an index u for the universal machine such that ϕu(e, x) =
ψ(e, x). �

19

Notation. We will denote the e-th partial recursive function by ϕe or ψe. ψe(x) ↓ means
ψe is defined (i.e., it halts) on input x. ψe(x) ↑ means ψe is undefined on x.

Next theorem tells us that there are (countably) infinitely many Turing machines which
compute the same function.

Theorem 8 (Padding lemma). For every e ∈ N, there are infinitely many i ∈ N such
that ψe = ψi.

Proof. For this we can take the e-th Turing machine description and we add dummy
instructions which will give us another Turing machine description but computing the
same function as before. Since we can add infinitely many different instructions we can
find infinitely many indices. �

Another theorem about indices is called the s-m-n theorem, also known as the
parameter theorem.

Theorem 9 (The s-m-n theorem). Let g(x, y) be a partial recursive funcion of two
variables. Then there is a recursive function s of one variable such that, for all x, y,

ϕs(x)(y) = g(x, y)

Proof. Given a Turing machine M computing g and given a number x ∈ N, we can define
a Turing machine N that, on input y, simulates the action of writing the pair (x, y) on
M ’s input tape and running M . We can then find an index s(x) for the function computed
by N . �

The intuition behind the s-m-n theorem is that data can be effectively incorporated
into a program. Numbers can as well code partial recursive functions, and thus we may
incorporate these numbers into a program as a subprogram. So the s-m-n theorem
embodies the notion of subcomputation and an effective version of function
composition. The theorem originates from Kleene and the name of the theorem comes
from writing s(x) in the more general form of Smn (x1, . . . , xk).

The next result is again one of the earliest theorems in recursion theory. It allows us
to use an index for a partial recursive function that we are building in a construction as
part of that very construction. Thus it forms the theoretical underpinning of the common
programming practice of having a routine make recursive calls to itself. The following
result is known as the fixed point theorem, but also known as the recursion theorem.

Theorem 10 (Recursion theorem). For every recursive function f there exists some
n ∈ N such that ψf(n) = ψn. Here, n is called the fixed point of f .

Proof. We first define the recursive “diagonal” function d(u) by

ψd(u)(z) =

{
ψψu(u)(z) if ψu(u) ↓
undefined otherwise.

Note that d is total and one-to-one by the s-m-n theorem. Moreover, d is independent
of f .

Given f , we choose an index j such that ψj = f◦d (here ◦ is the composition operator).
We show that n = d(j) is a fixed point of f . If f is total then so is f ◦ d = ψj . Therefore,
ψj(j) will be defined and ψd(j) = ψψj(j). We have that

20

ψn = ψd(j) = ψψj(j) = ψf(d(j)) = ψf(n).

The second equality follows from the definition of ψd(u)(z), the third equality follows
from that ψj = f ◦ d, the fourth equality follows from our hypothesis that n = d(j). �

We ask if ϕi(x) ↓ is a computable relation of i and x. We will not give an answer to
this question at the moment, but we can easily prove the following.

Proposition 2. If ϕi(x) ↓ is a computable relation of i and x, then so is the relation
ϕi(x) = y.

Proof. Let y be the least z such that ϕi(x) = z. �

Definition 9. We write ϕi,s(x) = y if i, x, y < s and ϕi(x) outputs y in < s steps. If such
a y exists, then we say that ϕi,s(x) converges, which we write as ϕi,s(x) ↓. Otherwise we
say it diverges and we write as ϕi,s(x) ↑. Similarly, we write ϕi(x) ↓ if there exists some
s such that ϕi,s(x) ↓.

From this definition, we can easily verify the following.

Corollary 1. (i) ϕi,s(x) ↓, ϕi,s(x) = y are both computable relations of i, s, x, y.

(ii) ϕi(x) ↓⇐⇒ ∃sϕi,s(x) ↓.

Example 8. Discuss the computability of

(i) P = {n :
n-th linear equation with integer coefficients and with one variable has a solution greater than n}.
Using Gödel numberings, we can list all such equations in order of the magnitude of
coefficients or the length of the equation, and see if the n-th equation has a solution
greater than n.

(ii) Q = {(n, i) : the first n digits of π contains i consecutive 7’s}.
Compute the first n digits of π and see if that initial segment contains i consecutive
7’s.

(iii) Suppose that Fib(x) holds iff x belongs to the Fibonacci sequence. Is Fib(x) a
decidable relation?

Fib(x) is a decidable relation for that we can generate the Fibonacci numbers
computably, and see if x is a member of this sequence. If we see some number
y > x without coming across x, then we know x won’t be in the remaining part of
the sequence.

(iv) R = {x : There exists a sequence of exactly x 7’s in the decimal expansion of π}.
This is more difficult. Unless we know more information about π we cannot compute
R. We will show later how to prove the incomputability of a set.

21

Recursively enumerable sets
In Example 8 (iv), although we cannot decide whether x ∈ R or not, π is what Alan

Turing called a computable real. We can effectively write down the decimals of π as far
as we like by using an infinite series for π known to coverge rapidly. So we can find the
n-th digit of π given any natural number n. This will lead us to a new notion of effective
enumeration, a kind of ‘semi-decidability’ for sets, and which is a more general form of
computability.

Definition 10. A set A is called recursively enumerable (r.e.) (or computably enumerable)
(c.e.) if there is an algorithm that enumerates the members of A. More formally, A is r.e.
if A is the domain of some partial recursive function.10 We denote the e-th r.e. set by

We = domϕe = {x : ϕe(x) ↓}.

Define We,s = dom(ϕe,s).
11

We can think of an infinite r.e. set A as an infinite effective list of elements of A (but
not necessarily in increasing or decreasing numerical order).

As we said the set {i : i is a prime number} is computable because there is an
algorithm for deciding whether or not a number is prime. However, the set

S = {i : There are i many consecutive 1’s in the decimal expansion of π}.

is only ‘semi-decidable’ as we can only decide the membership of an element one way.
That is, given i ∈ N, we can answer positively when there are really i many consecutive
1’s in the decimal expansion of π, but we may not always be able to answer negatively.

Concerning the relationship between recursive sets and recursively enumerable sets,
we observe the following theorem.

Theorem 11. Every recursive set is recursively enumerable.

Proof. Let S be a recursive set. We define a recursively enumerable set R which will be
equal to S. Initially let R = ∅. For every n ∈ N, if n ∈ S, then enumerate n into R. Since
R = S, S is r.e. �

The following theorem is another standard result about recursively enumerable sets
saying that a set A is recursive if and only if there is an enumeration for A and for its
complement A.

Theorem 12 (Complementation Theorem). A set A is recursive iff both A and A are
recursively enumerable.

Proof. If A, hence A, is recursive then both A and A are recursively enumerable. Now
suppose that we have enumerations for A and A. Then, for any given n ∈ N, n is going to
appear in the enumeration list of A if it is not going to appear in the enumeration list of
A. Similarly, if n is not going to appear in the enumeration list of A then it must appear
in the enumeration list of A at some point. Hence, we can decide for any given n ∈ N
whether or not n ∈ A. �

10Alternatively, we will show in Proposition 5 that A is r.e. iff A = ∅ or A is the range of a partial
recursive function.

11So if x ∈We,s then x, e < s. Note that ϕe(x) = y iff ∃s[ϕe,s(x) = y] and x ∈We iff ∃s[x ∈We,s].

22

Theorem 13 (Post, 1944). Every infinite recursively enumerable set contains an infinite
recursive subset.

Proof. Let S be an infinite recursively enumerable set. We define a computable set A ⊆ S
as follows. Initially let A = ∅. We then enumerate the members of S and whenever we find
some n that we have not yet enumerated into A such that n > m for every m ∈ A, we put
n into A. Now A is the range of an increasing computable function. So A is recursive. �

Infinite sets which do not contain an infinite r.e. subset will be later called immune
sets. It follows from Theorem 13 that a set is immune iff it does not contain infinite
recursive subsets.

Recursively enumerable sets and closed under unions and intersections. Let 〈x, y〉
denote the standard pairing function from N× N to N.

Proposition 3. If A and B are recursively enumerable sets, then so is A ∪B.

Proof. Similar to earlier example, we take enumeration functions for A and B, say f and
g, respectively. We define C to be the set of all pairs 〈x, y〉 such that f(x) ↓ or g(x) ↓. �

Exercise 5. Show that if A and B are recursively enumerable, then so is A ∩B.

Next, we give another characterization of r.e. sets. Let us first note the following
equivalency.

e-th Turing machine on input x halts ⇐⇒ ϕe(x) ↓⇐⇒ x ∈ domϕe.

Let us denote the domϕe by We, i.e. the e-th r.e. set. Similarly, denote dom(ϕe,s) by We,s.

Definition 11. (i) If for all x ∈ N we have x ∈ A⇐⇒ ∃yR(x, y) for some computable
relation R, then A is called a Σ0

1 set. We denote this by A ∈ Σ0
1.

(ii) If for all x ∈ N we have x ∈ A⇐⇒ ∀yR(x, y) for some computable relation R, then
A is called a Π0

1 set. We denote this by A ∈ Π0
1.

(iii) If A ∈ Σ0
1 and A ∈ Π0

1, then A is a ∆0
1 set, written as A ∈ ∆0

1.

Proposition 4. Let e be an index. Then, {x : ϕe,s(x) ↓} is a Σ0
1 set.

Proof. This immediately follows from the equivalency that ϕe,s(x) ↓⇐⇒ ∃sϕe,s(x) ↓. �

Exercise 6. Show that We,s is a computable set. Also observe that We =
⋃
s≤0We,s.

Now we give the normal form theorem for r.e. sets.

Theorem 14 (Normal form theorem for r.e. sets). The following statements are
equivalent.

(i) A is an r.e. set.

(ii) A is a Σ0
1 set.

(iii) A = We for some e ∈ N.

23

Proof. We start with (i) ⇒ (ii). Assume that A is recursively enumerable. Then, there
exists some e such that A = dom(ϕe). Hence, x ∈ A if and only if ∃sϕe,s(x) = y. Then,
A ∈ Σ0

1.
Now we prove (ii)⇒ (iii). Suppose that x ∈ A⇐⇒ ∃sR(x, s), where R is a recursive

relation. Define
ψ(x) = 0 if ∃sR(x, s); otherwise leave it undefined. Now ψ is a partial recursive

function since, by the Enumeration Theorem, ψ = ϕe for some e ∈ N. Then, x ∈ A ⇐⇒
ψ(x) ↓⇐⇒ ϕe(x) ↓. Hence, A = dom(ϕe). So A = We.

(iii)⇒ (i) is trivial. �

Definition 12. The graph of a (partial) function ψ is the relation

graph(ψ) = {(x, y) : ψ(x) ↓= y}.

Two partial functions are equal if their graphs are equal.

Example 9. It is easy to see that the following sets are r.e.

(i) K0 = {〈x, y〉 : x ∈We} = {〈x, e〉 : ∃s∃y[ϕe,s(x) = y]}.

(ii) K1 = {e : We 6= ∅} = {e : ∃s∃x[x ∈We,s]}.

(iii) range(ϕe) = {y : ∃s∃x[ϕe,s(x) = y]}.

(iv) graph(ϕe) = {(x, y) : ∃s[ϕe,s(x) = y]}.

The following theorem justifies the intuitive description of an r.e. set A as one whose
members can be effectively listed.

Proposition 5. A set A is recursively enumerable iff A = ∅ or A is the range of a
recursive function.

Proof. (⇐) If A = ∅, then A is r.e. Now suppose A = range(f) for some recursive
function f . Then A is r.e. by Example 9 (iii).

(⇒) Let A = We 6= ∅. Choose any a ∈We. Define the computable function f as

f(〈s, x〉) =

{
x if x ∈We,s+1 −We,s

a otherwise.

Note that for x 6= a, each x ∈ We is listed exactly once. Clearly, A = range(f), because
if x ∈ We, we choose the least s such that x ∈ We,s+1. Then, f(〈s, x〉) = x and so
x ∈ range(f). �

Theorem 15 (Uniformization Theorem). If R ⊆ N2 is an r.e. relation, then there is a
partial recursive function ψ such that

ψ(x) ↓⇐⇒ ∃yR(x, y),

and in this case (x, ψ(x)) ∈ R.

Proof. Since R is r.e. and hence Σ0
1, there is a computable relation S such that R(x, y)

holds if and only if ∃zS(x, y, z). Define the partial function

θ(x) = µu S(x, (u)1, (u)2)

and define ψ(x) = (θ(x))1. �

24

Proposition 6. A function is partial recursive iff its graph is recursively enumerable.

Definition 13. Two sets A and B are called disjoint if A ∩ B = ∅. Given two disjoint
sets A and B, a set C is called a separating set if A ⊆ C and B ∩ C = ∅. A and B are
recursively inseparable if there is no recursive separating set. Otherwise, if there exists
such a set, A and B called recursively separable.

Theorem 16. There exists recursively inseparable r.e. sets.

Proof. Define A = {e : ϕe(e) = 0} and B = {e : ϕe(e) = 1}. Clearly, both are r.e. sets
and disjoint, i.e. A∩B = ∅. Suppose that there exists a recursive set C such that A ⊆ C
and B ∩ C = ∅. Let χC denote the characteristic function of C. Since C is recursive, χC
is total. By Enumeration Theorem there exists an index u such that χC = ϕu.

Now u is either in C or not. If u ∈ C, then χC(u) = ϕu(u) = 1. Then u ∈ B. But
since B ∩ C = ∅, we have that u 6∈ C. Contradiction.

Now suppose u 6∈ C. Then χC(u) = ϕu(u) = 0. But then u ∈ A. But since A ⊆ C in
the hypothesis, u ∈ C. A contradiction. �

Recursively inseparable r.e. sets appear naturally. Sets of provable and refutable
statements are recursively inseparable r.e. sets. That is,

P = {gn(ϕ) : ϕ is provable in PA}

and
R = {gn(ϕ) : ¬ϕ is provable in PA},

where gn(ϕ) denotes the Gödel number of ϕ, are both recursively enumerable and
recursively inseparable.

3 Incomputable sets

Gödel already showed the existence of undecidable statements in formal arithmetic. There
is more to say about this however, for that not only do there exist undecidable statements,
but there are uncountably many of them. In fact, the claim that not every function can
be computable, and even that there are uncountably many non-computable functions,
can be shown by a simple cardinality argument. There are only countably many Turing
machine programs but uncountably many functions from N to N. Therefore, there must
be uncountably many incomputable functions f : N→ N.

We now describe the canonical example of a set which is recursively enumerable but
not recursive. The corresponding decision problem is to decide whether or not a partial
recursive function will ever be defined on a given argument. This is known as the halting
problem, and its unsolvability may be seen as the main reason we have incompleteness.

Definition 14. Let K = {x : ϕx(x) ↓} be the halting set.

Theorem 17. K is recursively enumerable.

Proof. K is the domain of the partial recursive function

ψ(x) =

{
x if ϕx(x) ↓
undefined otherwise.

25

Now ψ is partial recursive by Church-Turing Thesis since ψ(x) can be computed by
applying the x-th partial recursive function to input x and giving output x only if ϕx(x)
converges. �

Theorem 18. K is not recursive.

Proof. Assume for a contradiction that K is recursive. If K had a recursive characteristic
function χK , the following would also be recursive.

f(x) =

{
ϕx(x) + 1 if x ∈ K
0 if x 6∈ K.

But f cannot be recursive since f 6= ϕx for every x. Therefore, K cannot be recursive. �

Combining the fact that K is a non-recursive r.e. set with the complementation
theorem, we have the following.

Corollary 2. K is not recursively enumerable.

We usually prove the undecidability of a set by ‘coding’ it into other undecidable sets,
such as the halting set.

Proposition 7. There is no algorithm to decide whether the domain of ϕx is empty.

Proof. We code the halting problem into the problem of deciding whether dom(ϕx) = ∅.
That is, we show that if we could decide whether dom(ϕx) = ∅, then we could also decide
whether ϕx halts on a given input. Define a partial computable function of two variables
by

g(x, y) =

{
1 if ϕx(x) ↓
↑ if ϕx(x) ↑.

Notice that g ignores its second input.
Via the s-m-n theorem, we can consider g(x, y) as a computable collection of partial

computable functions. That is, there is a computable function s such that, for all x, y,

ϕs(x)(y) = g(x, y).

Now,

dom(ϕs(x)) =

{
N if ϕx(x) ↓
∅ if ϕx(x) ↑.

This is due to the fact that x is independent of y. By this way, if we could decide for a
given x whether ϕs(x) has empty domain, then we could solve the halting problem. �

Definition 15. An index set is a set A such that if x ∈ A and ϕx = ϕy then y ∈ A.

26

An index set can be thought of as coding a problem about computable functions
(like the emptiness of domain problem) whose answer does not depend on the particular
algorithm used to compute a function. We have the following result, which shows that
non-trivial index sets are never computable. The proof is very similar to the proof of
previous theorem.

Theorem 19 (Rice’s Theorem). An index set A is computable iff A = N or A = ∅.

Proof. (⇐) Trivial.
(⇒) We prove by the contrapositive. Let A 6∈ {∅,N} be an index set. Let e be such

that dom(ϕe) = ∅. We may assume without loss of generality that e ∈ A (the case e ∈ A
being symmetric for that all functions in A compute the same thing). Fix i ∈ A. By the
s-m-n theorem, there is a computable s(x) such that, for all y ∈ N,

ϕs(x)(y) = g(x, y) =

{
ϕi(y) if ϕx(x) ↓
↑ if ϕx(x) ↑.

If ϕx(x) ↓, then ϕs(x) = ϕi and so s(x) ∈ A since we know i ∈ A, while if ϕx(x) ↑, then
ϕs(x) = ϕe and so s(x) 6∈ A. Thus, if A were computable, then the halting set K would
also be computable. Contradiction. Therefore, A is not computable. �

Theorem 20. K is not an index set.

Proof. For each n, let f(n) be the index of {n}. That is, we let domϕf(n) = {n}. Then,
by the Fixed Point Theorem, we get Wf(e) = We for some e. Thus,

e ∈We = Wf(e) = {e}.

But taking a different index e′ of the set {e} (using Padding Lemma), we have e′ 6∈We′ =
{e}. We then have e ∈ K since e ∈ We, and We = We′ since we assumed e′ is the index
of the set {e}, but e′ 6∈ K since e′ 6∈We′ . A contradiction. �

The following are some examples to index sets which correspond to natural unsolvable
problems.

K1 = {x : Wx 6= ∅}.
Fin = {x : Wx is finite}.
Inf = {x : Wx is infinite}.
Tot = {x : ϕx is total} = {x : Wx = N}.
Con = {x : ϕx is total and constant}.
Cof = {x : Wx is cofinite}.
Rec = {x : Wx is recursive}.

Creative and productive sets
We want to look for more examples of incomputable sets. One example was introduced

by Emil Post as follows.

27

Definition 16. A set P is productive if there exists a recursive function ψ(x), called a
productive function for P , such that

∀x[Wx ⊆ P =⇒ ψ(x) ∈ P −Wx].

An r.e. set C is creative if C is productive.

Example 10. Show that if A is creative, then it is not computable

Theorem 21. Creative sets exist. In particular, K is a creative set.

Proof. We know that K is recursively enumerable. We define the creative function for K
to be the identity function f : x→ x. Assume that We ⊆ K. Then, e 6∈We since otherwise
we would have e ∈ K ∩We which would be a contradiction. So f(e) = e ∈ K −We. �

Note that K is productive with the identity productive function, i.e., f(x) = x.
No productive set A can be recursively enumerable, because whenever A contains every

number in an r.e. set Wi, it contains other numbers, and moreover there is an effective
procedure to produce an example of such a number from the index i. Similarly, no creative
set can be decidable, because this would imply that its complement, a productive set, is
recursively enumerable.

Proposition 8. If C is a creative set, then

(i) there exists an algorithm such that, given any n member of C, one can effectively
find n+ 1 members of C.

(ii) hence C contains an infinite r.e. subset.

Proof. (i) Let y1, y2, . . . , yn be a (possibly empty) list of members of C, and let C have
a corresponding creative function f . Given n members for the list, there exists some
i such that Wi = {y1, y2, . . . , yn}. Since Wi ⊂ C, we have f(i) ∈ C − Wi. But then
{y1, . . . , yn, f(i)} ⊂ C, where yj 6= f(i) for j ≤ n.

(ii) Enumerate an infinite r.e. subset A = {f(i0), f(i1), . . .} of C as follows
Find i0 such that Wi0 = ∅, and enumerate i0 into A.
Assume n numbers are enumerated into A already with corresponding index computes.

Say {f(i0), f(i1), . . . f(in−1)} = Win ⊂ C. Enumerate f(in) into A. �

Next we look at a natural way of comapring two sets in terms of how complex they
are regarding their unsolvability.

Reducibilities

Definition 17. A set A is many-to-one reducible to B (written A ≤m B) if there is a
computable function f such that x ∈ A iff f(x) ∈ B. We write A ≡m B if A ≤m B and
B ≤m A.

If f is one-to-one, we say that A is one-to-one reducible to B (written A ≤1 B). We
write A ≡1 B if A ≤1 B and B ≤1 A.

Theorem 22. (i) If B ≤m A and A is recursive, then B is also recursive.

28

(ii) If B ≤m A and A is r.e., then B is also r.e.

(iii) A is r.e. iff A ≤m K.

Proof. (i) Suppose B ≤m A via a recursive function f . Then χB = χA ◦ f .
(ii) Suppose B ≤m A via a recursive function f . Use the Normal Form Theorem.

Assume A ∈ Σ0
1 with x ∈ A ⇐⇒ ∃yR(x, y) for some computable relation R. Then

x ∈ B ⇐⇒ ∃yR(f(x), y), giving B ∈ Σ0
1, hence being r.e.

(iii) Exercise. �

Definition 18. (i) A computable permutation is a one-to-one computable function
from N onto N.

(ii) A is computably isomorphic to B (written A ≡ B) if there is a computable
permutation p such that p(A) = B.

Theorem 23 (Myhill’s Isomorphism Theorem). A ≡ B if and only if A ≡1 B.

Proof. (⇒) Trivial.
(⇐). Let A ≤1 B via f and B ≤1 A via g. Therefore,

∀x∀y[x ∈ A⇐⇒ f(x) ∈ B and y ∈ B ⇐⇒ g(y) ∈ A] (1)

We define a computable permutation h by stages s ∈ N so that h(A) = B. Suppose
that by the end of stage 2s we have finite sets X = {x1, x2, . . . , xn} on one side, and
Y = {y1, y2, . . . , yn} on the other side, and a one-to-one function h such that h(xi) = yi
for all 1 ≤ i ≤ n such that

∀x ∈ X[x ∈ A⇐⇒ h(x) ∈ B] (2)

Stage 2s + 1. We shall define h(s) if it is not already defined. Compute f(s) = t1. If
t1 6∈ Y , define h(s) = t1. If t1 ∈ Y , say t1 = yi, then take xi = h−1(t1). Note that xi ∈ A
iff s ∈ A by (1) and (2). Compute f(xi) = t2. If t2 6∈ Y , define h(s) = t2. Otherwise,
t2 = yj for some j. Take xj = h−1(yj) and note that xj ∈ A iff s ∈ A as before. Compute
f(xj) = t3. If t3 6∈ Y , define h(s) = t3. Otherwise, t3 = yi for some i. Take xi = h−1(yi)
and note that xi ∈ A iff s ∈ A as before. Compute f(xi) = t4. Continue in this fashion
until a new element z 6∈ Y is found and define h(s) = z. Note that X ∪ {s} has n + 1
elements but Y has only n elements, so the procedure must terminate.

Stage 2s + 2. Find the value of h−1(s) in similar fashion using h−1 and g in place of
h and f . �

Theorem 24 (Myhill, 1955). (i) P is productive iff K ≤1 P .

(ii) C is creative iff C ≡ K iff A ≤1 C for every r.e. set A.

29

4 Relative computability

Around the late 1930’s, Alan Turing introduced o-machines in one part of his doctoral
thesis and extended the definition of standard Turing machine. Using Turing’s o-machines
Emil Post, around 1944, used this to relativize computability and opened up a vast
research area for recursion theorist. The idea is to relativize computability by taking
the membership characteristic information of a set for granted and use it to compute
other sets. While a set may not be computable, it may be ‘computed’ relative to another
non-computable set, i.e., if we were given access to the membership information of another
non-computable set. So the intuition is to use information concerning the membership of
one set to help compute the membership problem of another set.

Let A and B be two sets. We want B to be computable from A if we can answer
“Is n ∈ B?” using an algorithm whose computation uses finitely many queries about
membership in A. That is, we ask finitely many questions whether some m ∈ A during
the computation of B. In other words, we consult A when computing B. In this case, A
is called an oracle and the computation uses an oracle for A. We earlier said that sets
are described by their characteristic functions, which define their characteristic sequence,
that is, an infinite binary string coding the membership of natural numbers.12 Thus an
oracle for a set is just the characteristic sequence of that set. For this relativized form
of computation, we use oracle Turing machines. An oracle Turing machine is just like a
standard Turing machine with an extra read-only tape, called the oracle tape, on which
the characteristic sequence of the oracle is written. Then, we can define the transition
function as δ : Q × Σ1 × Σ2 → Q × Σ2 × {L,R}2, where Σ1 denotes the oracle tape
alphabet and Σ2 denotes the work tape alphabet. In the computation of oracle Turing
machines, we read the characteristic sequence of A written on the oracle tape and we
perform the given instructions as usual. Since we use the information of an oracle in our
computation, whatever we compute is only computable relative to that oracle.

We earlier said that Turing machine programs, i.e., hence partial computable
functions, can be effectively listed. Recall that we denoted the e-th partial computable
function by ψe. In that case, there was no use of an oracle. We now include oracles in
the definition. We denote the e-th partial recursive function with an oracle A by ΨA

e .
We also call this a Turing functional for reasons that will become clear shortly.

Let u be the total number of scanned non-empty cells in the oracle A during the
computation. In this case, u is the maximum number used in the membership test of A.
For convenience, then, we shall only ‘use’ the elements x ≤ u. If no element is scanned,
we let u = 0.

If a Turing functional ΨA
e is defined for a given argument and if this happens in < s

steps, and if e, x, y, u < s, then we write ΨA
e,s(x) = y (or ΨA

e,s(x) ↓= y). If the Turing

functional is defined with σ ∈ 2<N on its oracle tape and u ≤ |σ| (therefore only σ is
scanned), then we write Ψσ

e (x) = y.
Occasionally we also allow (total) functions f as oracles by defining Ψf

e to be ΨA
e

where A = {〈x, y〉 : f(x) = y}, and allow partial functions as outputs.

Definition 19. (i) We say that a function f is recursive in A (or A-recursive), written

12With a little abuse of the notation, given a set A, we will write A(n) to mean χA(n).

30

f ≤T A, if there is some e such that ΨA
e (x) ↓= y iff f(x) = y. A set B is said to be

A-recursive, written as B ≤T A, if χB is A-recursive. We write B <T A if B ≤T A
and A 6≤T B.

(ii) We write WA
e to denote domΨA

e . If B = WA
e for some e ∈ N, then we say that B is

recursively enumerable in A.

We said that we could also call Ψ a Turing functional for that we have a more general
description of a partial function since Ψ is a mapping from 2N to 2N, as it takes, for
instance, A to B if ΨA

e = B for some e. We say that Ψe is total if ΨA
e (x) is defined

for every A ⊆ N and x ∈ N, that is, it is total for all A there is some B such that
ΨA
e (x) = B(x) for every x.

Convention: The oracle Turing machine is self-delimiting in the sense that when a
computation halts after reading σ on its oracle tape, then it must not read any more of
the oracle tape and the machnine must turn off. By this property we have that if
ΨA
e (x) ↓= y, then there exists a unique least string σ ⊂ A such that Ψσ

e (x) converges.
Also, for every pair (σ, x) there can only be at most one y such that Ψσ

e (x) = y. From
these conventions, we define the oracle graph of the Turing functional Ψe as the
following r.e. set of axioms:

{〈σ, x, y〉 : Ψσ
e (x) = y}.

Theorem 25 (Use Principle). The use conventions given above yield:

(i) ΨA
e (x) = y =⇒ ∃s ∃σ ⊂ A

[
Ψσ
e,s(x) = y

]
,

(ii) Ψσ
e,s(x) = y =⇒ ∀t ≥ s ∀τ ⊃ σ

[
Ψτ
e,t(x) = y

]
,

(iii) Ψσ
e (x) = y =⇒ ∀A ⊃ σ

[
ΨA
e (x) = y

]
.

This principle is important for later use. It implies that Ψe is continuous in the sense
that the computation is progressive. The first item says that when a computation halts
it does so in a finite number of stages and hence only a finite number of bits of the oracle
tape can be scanned. The second item says that if a computation Ψσ

e (x) is defined by
the stage s, it will also be defined and give the same value for stages t ≥ s and for all
extensions of σ. The third item says that if Ψσ

e (x) ↓= y for some σ ∈ 2<N then the
computation is also defined for all infinite extensions of σ.

For convenience, we assume that for any string σ ∈ 2<N and any e, n ∈ N, Ψσ
e (n) is

not defined when |σ| < n. Hence if this computation converges, it does so in at most |σ|
steps.

All standard theorems now can be relativized. The following is the relativized
enumeration and universal TM theorem .

Theorem 26. There is an effective enumeration of all oracle Turing machines, and a
universal oracle Turing machine Ψ such that ΨA(x, y) = ΨA

x (y) for all x, y and all A ⊆ N.

Theorem 27. B ≤T A if and only if both B and B are r.e. in A.

31

The following is another known fact which easily follows from the relativization of the
normal form theorem for r.e. sets. Note first the relativization of Σ0

1 sets. We say that a

set B is Σ0,A
1 (or simply ΣA1) if B = {x : ∃y1, . . . ynRA(x, y1, . . . , yn)} for some A-recursive

relation RA(x, y1, . . . , yn).

Theorem 28. The following are equivalent:

(i) B is r.e. in A.

(ii) B = ∅ or B is the range of some A-recursive total function.

(iii) B is Σ0,A
1 .

4.1 Turing degrees and the jump operator

Now we define the Turing degrees and the jump operator, both of which play a central
role in computability theory.

Definition 20. (i) Let A and B be two sets. If A ≤T B and B ≤T A, then we say
that A and B are Turing equivalent, and this is denoted by A ≡T B.

(ii) We define the Turing degree (or degree of unsolvability) of a set A ⊆ N to be

a = deg(A) = {X ⊆ N : X ≡T A}.

(iii) We write D for the collection of all such degrees, and define a partial ordering
induced by ≤T on D by

deg(B) ≤ deg(A)⇐⇒ B ≤T A.

We write deg(A) < deg(B) if A <T B, i.e. if A ≤T B and B 6≤T A.

(iv) We denote Turing degrees by lowercase boldface Latin letters a,b, c,d.

Definition 21. (i) A degree a is called recursively enumerable if it contains a
recursively enumerable set. We let R denote the set of all recursively enumerable
degrees with the same ordering as for D.

(ii) We say that a degree a is recursively enumerable in b if a contains some set A r.e.
in some set B ∈ b.

Intuitively, if two sets are of the same degree then they can be thought of as equally
difficult to compute. If a < b, this means that sets of degree b are more difficult to
compute than those of degree a.

Definition 22. We define the join of two sets A and B as

A⊕B = {2i : i ∈ A} ∪ {2i+ 1 : i ∈ B}.

The join a ∪ b of degrees a = deg(A), b = deg(B) is defined as

a ∪ b = deg(A⊕B).

32

Definition 23. (i) A partially ordered set (poset) L = (L;≤,∨,∧) is called a lattice
if any two elements have a least upper bound (also known as supremum, join, or
union) and greatest lower bound (also known as infimum, meet, or intersection).13

If a and b are elements of L, a∨ b denotes the least upper bound (l.u.b.) of a and b,
and a∧b denotes the greatest lower bound (g.l.b.). If L contains a least element and
greatest element, these are called the zero element 0 and unit element 1, respectively.
In such a lattice, a is the complement of b if a ∨ b = 1 and a ∧ b = 0.

(ii) A poset closed under union but not necessarily under intersection is called an upper
semi-lattice. A poset closed under intersection but not necessarily under union is
called a lower semi-lattice.

Proposition 9. a ∪ b is the least upper bound of a and b.

Proof. Exercise.

Basic structural properties of Turing degrees
The basic properties of the structure (D,≤) can be given as follows.

Theorem 29. i) There is a least degree 0 which is the set of all recursive sets.

(ii) Each degree a has ℵ0 elements.

(iii) The set of degrees ≤ a, for a given degree a, is countable, i.e. |{b : b ≤ a}| ≤ ℵ0.

(iv) D has 2ℵ0 elements.

Proof. Proof of (i) is obvious.

For (ii), let a = deg(A) be a Turing degree. Then,

a = {X : X ≡T A}
⊆ {X : X ≤T A}
⊆ {ΨA

i : ΨA
i is total}

⊆ {ΨA
i : i ≥ 0}.

So a is a subset of a countable set and therefore a is countable. To show that a is also
infinite, define

Ai =

{
A ∪ {i} if i 6∈ A
A− {i} if i ∈ A.

Then for each i, j, we have Ai(i) 6= Aj(i) = A(i), giving Ai 6= Aj . Moreover, for any i,
Ai ≡T A. So a contains every Ai. Hence a is infinite.

Proof of (iii): Let D(≤ a) = {b : b < a}, and let A ∈ a. Then,

13Recall that a partially ordered set is a set that is ordered by a relation which is reflexive, antisymmetric
and transitive.

33

D(≤ a)) = {deg(X) : X ≤T A} = {deg(ΨA
i) : ΨA

i is total} ⊆ {deg(ΨA
i) : i ≥ 0}.

So D(≤ a) is countable.

For (iv), suppose for a contradiction that there are countably many Turing degrees.
As proved in (ii), every degree contains countably many elements, so for any X ⊆ N,
deg(X) = {A : A ≡T X} is countable. If we assume that that there are countably many
degrees, then this means the set of all subsets of N (of cardinality 2ℵ0) is partitioned
by Turing equivalence into countable union of countable equivalence classes. That is,
|
⋃
i∈I Ci| = 2ℵ0 for some countable set I. But we know that 2N is uncountable. Hence, I

must be of size 2ℵ0 . �

For any a and b in D, the least upper bound is their join. Therefore, the degree
structure forms an upper semi-lattice. However, the greatest lower bound may not always
exist for D or R. Hence, neither D nor R forms a lattice. We will show later that D is
strictly a semi-lattice.

One final remark about the Turing degree of functions. Turing degrees of functions
are defined by the degree of their graphs. That is, deg(f) is defined as the degree of the
graph of f .

Turing jump
Recall that the definition of the halting set K does not depend on any oracle (or it

depends on ∅, if you prefer to view the partial recursive function in that definition as Ψ∅e).
We can relativize the halting set to any set A ∈ N. This gives us what we call the ‘Turing
jump’ of A, and it gives us a chance to study higher degrees in the Turing universe.

Definition 24. We define the jump of a set A to be

A′ = KA = {x : ΨA
x (x) ↓} = {x : x ∈WA

x }.

We pronounce A′ as “A prime”. The (n+ 1)th jump of A is defined as A(n+1) = (A(n))′,
where A(1) = A′.

Observe that A ≤T A′. More generally, A(n) ≤T A(n+1). In fact, due to next theorem,
that this relationship is strict. We can summarize some of the important properties of the
jump operator as follows.

Theorem 30 (Jump Theorem). Let A,B ⊆ N. Then,

(i) A′ is r.e. in A.

(ii) A′ 6≤T A.

(iii) If A is r.e. in B and B ≤T C then A is r.e. in C.

(iv) A is r.e. in B iff A ≤1 B
′.

(v) B ≤T A iff B′ ≤1 A
′.

(vi) A ≡T B iff A′ ≡1 B
′.

34

Proof. (i) Note that K can be expressed more generally as {〈x, y〉 : x ∈ Wy}. We then
have

〈x, y〉 ∈ A′ ⇐⇒ x ∈WA
y

⇐⇒ ∃s[x ∈WA
y,s].

The expression in square brackets is computable in A. So A′ ∈ ΣA1 , and so it is r.e. in A.

(ii) Follows from the fact that K is not recursive.

(iii) If A 6= ∅, then A is the range of some B-recursive function, and hence of some
C-recursive function since B ≤T C.

(iv) Follows from that A is r.e. iff A ≤1 K.

(v) (=⇒) Suppose B ≤T A. By (i) we have that B′ is r.e. in B. Now since B′ is r.e.
in B and since we assume B ≤T A, by (iii) it follows that B′ is r.e. in A. Then, by (iv)
we have B′ ≤1 A

′.
(⇐=) Assume now B′ ≤1 A

′. Since both B and B are ≤1 B
′, we have that B ≤1

B′ ≤1 A
′ by our assumption. From this it follows that since B ≤1 A

′, by (iv) we have
that B is r.e. in A. We get the same for B. Hence both B and B are r.e. in A. Therefore,
by the Complementation Theorem, B ≤T A.

(vi) Follows immediately from (v). �

Let a′ = deg(A′) for A ∈ a. Note that a′ > a and a′ is r.e. in (and above) a. Let
0(n) = deg(∅(n)). Then, we have an infinite hierarchy of degrees

0 < 0′ < 0′′ < · · · < 0
(n)

< · · · .

From the fact that the jump is strictly increasing, it follows that D has a least element
but no maximal element. Note that 0′ is the degree of K which is Turing equivalent to
∅′.

We can give the following natural examples to the first few degrees. These sets were
given earlier in the notes.

0 = deg(∅) is the degree of all computable sets.
0′ = deg(∅′) is the degree of K,K0, and other similar variants of K.
0′′ = deg(∅′′) is the degree of Fin, Tot, Inf
0′′′ = deg(∅′′′) is the degree of Cof, Rec.

4.2 Computable Approximations

Apart from recursive sets, on may also consider sets that to which we can approximated by
a computable sequence by certain means. The methods one may use in the approximations
here vary. One way of approximating to a recursively enumerable set A is to define a
monotonic computable sequence of finite sets {As}s∈N such that As ⊆ As+1, and let

35

A =
⋃
sAs. Consider now a more general approximation where a set is not approximated

by the union of monotonic computable sequence of sets, but by A = limsAs where
membership of x ∈ A can change finitely often as s tends to infinity. This is called a limit
computable approximation, also called ∆2 approximation. In some sense, we allow ‘errors’
in the computation where the value of A(x) is changed finitely often in the approximation
before it gets settled for good. We let A � x denote {A(y) : y ≤ x}.

Definition 25. (i) A set A is Σ2 if there is a computable relation R such that

x ∈ A⇐⇒ ∃y∀zR(x, y, z).

(ii) A set A is Π2 if A is Σ2.

(iii) A set A is ∆2 if A ∈ Σ2 and A ∈ Π2.

Definition 26. (i) A set A is limit computable if there is a computable sequence
{As}s∈N such that for all x,

A(x) = lim
s→∞

As(x).

By the Limit Lemma, we call {As}s∈N a ∆2-approximation for A.

(ii) Given {As}s∈N, any function m(x) is called a modulus of convergence if

∀x∀s ≥ m(x) [A � x = As � x].

We define the least modulus function as

mA(x) = (µs)[A � x = As � x].

(iii) If A is an r.e. set, then a computable sequence {As}s∈N is a Σ1-approximation to
A if A =

⋃
sAs and As ⊆ As+1. In this case, mA(x) is a modulus and is called the

least modulus. The least modulus is the first stage after which the approximation of
A(x) is always correct.

Theorem 31 (Limit lemma, Shoenfield 1959). The following statements are equivalent.

(i) A is limit computable.

(ii) A ∈ ∆2.

(iii) A ≤T ∅′.

Proof. (i)⇒(ii). Let A(x) = limsAs(x) such that {As}s∈N is a computable sequence.
Then

x ∈ A⇐⇒ ∃s∀t[t ≥ s⇒ At(x) = 1]

x ∈ A⇐⇒ ∃s∀t[t ≥ s⇒ At(x) = 0]

and hence A ∈ Σ2 and A ∈ Σ2, so A ∈ Π2. Therefore, A ∈ ∆2.

(ii)⇒(iii). Suppose that there are computable relations R and S such that

x ∈ A⇐⇒ ∃s∀tR(x, s, t) and x ∈ A⇐⇒ ∃s∀tS(x, s, t).

36

The predicate ∀tR(x, s, t) is Π1 and therefore computable in ∅′. Hence, the predicate
∃s∀tR(x, s, t) is Σ1 in ∅′ and thus r.e. in ∅′, and similarly for ∃s∀tS(x, s, t). Therefore, A
and A are both r.e. in ∅′. Hence, A ≤T ∅′.

(iii)⇒(i). Let {Ks}s∈N be a computable sequence such that
⋃
sKs = K ≡T ∅′. Assume

A = ΨK
e . For every x and s define

f(x, s) =

{
ΨKs
e,s(x) if defined;

0 otherwise.

For every x, the first case holds for all but finitely many s. Therefore, A(x) = lims f(x, s).
�

We imagine the degrees ≤ 0′ forming an oval with 0′ on the top and 0 at the bottom.
We first have the r.e. degrees, which forms a smaller inner oval. And then the Limit
Lemma characterizes ∆2 as the degrees in the outer oval containing the inner oval.

5 Arithmetical hierarchy

In this section we describe another way to classify the incomputability of sets according
to the quantifier complexity of their definitions. We define the classes Σ0

n, Π0
n (also shortly

denoted as Σn, Πn). The superscript 0 denotes that we are working in first order logic,
that is we are quantifying over natural numbers. The subscript will denote the number
of alternating quantifiers. For the second-order case, i.e. the analytical hierarchy, we refer
the reader to Roger (1967) Theory of recursive functions and effective computability or
Sacks (1990) Higher Recursion Theory.

Definition 27. (i) A set A is in Σ0
0 = Π0

0 = ∆0
0 if it is computable.

For n ≥ 1:

(ii) A is in Σ0
n if there is a computable relation R(x, y1, . . . , yn) such that

x ∈ A⇐⇒ (∃y1)(∀y2)(∃y3) . . . (Qyn)R(x, y1, . . . , yn),

where Q is ∃ for n odd, and ∀ for n even.

(iii) A is in Π0
n if there is a computable relation R(x, y1, . . . , yn) such that

x ∈ A⇐⇒ (∀y1)(∃y2)(∀y3) . . . (Qyn)R(x, y1, . . . , yn),

where Q is ∀ for n odd, and ∃ for n even.

(iv) A is ∆0
n if A ∈ Σ0

n ∩Π0
n.

(v) A set A is arithmetical if A ∈
⋃
n∈N(Σ0

n ∪Π0
n).

Theorem 32. (i) A ∈ Σn ⇐⇒ A ∈ Πn.

(ii) A ∈ Σn (or Πn) =⇒ (∀m > n)[A ∈ Σm ∩Πm].

(iii) Sets in Σn (or Πn) are closed under intersections and unions.

37

Proof. (i) If A = {x : (∃y1)(∀y2) . . . (Qyn)R(x, y1, . . . , yn)}, then

A = {x : (∀y1)(∃y2) . . . (Qyn)¬R(x, y1, . . . , yn)}.

(ii) It can be generalized that, for example, if A = {x : (∃y1)(∀y2)R(x, y1, y2)}, then
we can rewrite A by adding a ‘dummy’ quantifier as

A = {x : (∃y1)(∀y2)(∃y3)[R(x, y1, y2) ∧ y3 = y3]}.

The fact that A ∈ Πm can be shown similarly by adding a dummy ∀ quantifier to the
beginning of the formula that defines A.

(iii) Exercise. �

Due to the fact that we can arbitrarily many dummy quantifiers, we have that Σn ⊆
Σn+1 (and similarly for Πn). In fact, we will observe due to Post’s Theorem that this
subset relation is strict. Therefore, the arithmetical hierarchy does not collapse and we
have the following strict relation as shown in figure below, where each line represents a
strict subset relation.

Let us give some examples to determine the quantifier complexity of sets.

Example 11. Let Tot = {i : ϕi is a total function} = {x : Wx = N}. We can argue that
Tot is a Π0

2 set since

i ∈ Tot ⇐⇒ ∀nϕi(n) ↓
⇐⇒ ∀n∃s[ϕi,s(n) ↓].

i ∈ Tot ⇐⇒ ∀n∃s∀m[ϕi,s(n) ↓]

and that the expression in square brackets is computable, Tot ∈ Σ0
3 ∩Π0

3.

Example 12. We show that Fin = {e : We is finite} is in Σ2.

e ∈ Fin ⇐⇒ ∃x∀y∀s [y ∈We,s → y < x]
⇐⇒ ∃∀ [y ∈We,s → y < x]

38

Since the relation in squared brackets is computable, Fin ∈ Σ0
2.

Example 13. Let Rec := {e : We ≡T ∅}. We show that Rec ∈ Σ3.

i ∈ Rec ⇐⇒ Wx is computable
⇐⇒ ∃y[Wx = W y] (by complementation theorem)
⇐⇒ ∃y[Wx ∩Wy = ∅ ∧ Wx ∪Wy = N]
⇐⇒ ∃[∀ ∧ ∀∃] (by Example 11)
⇐⇒ ∃∀∃[. . .].

We will now show the relationship between the complexity classes of arithmetical
hierarchy and the jump classes. The result is known as Post’s Theorem in the literature,
and it gives us some useful facts about the arithmetical hierarchy. First we need a lemma,
for which we will omit the proof.

Lemma 2. For any A ⊆ N, and n ≥ 0,

A ∈ Σ0
n+1 ⇐⇒ A is r.e. in ∅(n).

Definition 28. A set A is Σ0
n-complete if A ∈ Σ0

n and B ≤m A for every B ∈ Σ0
n.

Π0
n-complete and ∆0

n-complete sets are defined similarly.

Theorem 33 (Post’s Theorem). Let A ⊆ N and n ≥ 0. Then:

(i) ∅(n+1) is Σ0
n+1-complete.

(ii) A ∈ Σ0
n+1 ⇐⇒ A is r.e. in ∅(n)

(iii) A ∈ ∆0
n+1 ⇐⇒ A ≤T ∅(n).

Proof. (i) For each A ⊆ N we have

A ∈ Σ0
n+1 ⇐⇒ A is r.e. in ∅(n) (by Lemma 2)

⇐⇒ A ≤m (∅(n))′ = ∅(n+1) (by Jump Theorem (iv)).

In particular ∅(n+1) ∈ Σ0
(n+1), and so by above it is Σ(n+1)-complete since A is assumed

to be Σ0
n+1.

(ii) This follows from Lemma 2.

(iii) We have the following equivalencies

A ∈ ∆0
(n+1) ⇐⇒ A ∈ Σ0

(n+1) ∩Π0
(n+1)

⇐⇒ A ∈ Σ0
(n+1) and A ∈ Σ0

(n+1)

⇐⇒ A and A are r.e. in ∅(n) (by part (ii))

⇐⇒ A ≤T ∅(n) (by relativized Complementation Theorem)

�

From Post’s Theorem, the following corollary follows.

Corollary 3. For every n > 0, ∆n ⊂ Σn, ∆n ⊂ Πn.

39

5.1 Domination properties and jump classes

We say that a function f dominates a function g if there exists some natural number m
such that f(n) ≥ g(n) for all n > m. A partial function ψ(x) dominates a partial function
ϕ(x) if ψ dominates ϕ whenever ϕ(x) ↓.

Definition 29. A set A is computably dominated if g ≤T A is dominated by a computable
function.

Definition 30. The least modulus of A is

mA(x) = µs[As � x = A � x]

Theorem 34 (Domination Properties). Let {As}s∈N be a computable enumeration of
an r.e. set A and let f be a total function.

(i) If f dominates mA(x), then A ≤T f .

(ii) For any D ≤T ∅′,

D ≡T ∅′ ⇐⇒ (∃f ≤T D)[f dominates every partial recursive function].

(iii) If {Bs}s∈N is an enumeration of an r.e. setB andmA(x) dominates the least modulus
function mB(x), then B ≤T A.

Proof. (i) By definition, there is some y such that for all x > y, we have ∀x[(x ∈ A)⇐⇒
x ∈ Af(x)].

(ii) (=⇒) Build f ≤T ∅′ by using ∅′ to determine for a given input x which ψe(x)
converges for e ≤ x. Then define f(x) exceed all these values.

(⇐=) Follows from (i) because f dominates mK(x) (since D could be taken to be
equivalent to ∅′ = K in the hypothesis).

(iii) By definition, there is some y such that for all x > y, we have ∀x[(x ∈ B) ⇐⇒
x ∈ BmA(x)]. �

Definition 31. Let a0 < a1 < a2 < . . . be a list of A ⊆ N in ascending order. Then the
function pA given by pA(x) = ax is called the principal function for A. We say that an
infinite set E ⊆ N is hyperimmune if pE is not dominated by any computable function.

We know by Theorem 13 that every infinite r.e. set contains a recursive subset. An
infinite set is called immune if it contains no infinite r.e. set. The intuition of immunity
refers to the impossibility of computing an infinite subset of the set. Also note that every
hyperimmune set is immune. The following proposition establishes a relation between
computable domination and hyperimmune sets.

Proposition 10. A set A is not computably dominated iff there is a hyperimmune set
E ≡T A.

Proof. (⇐=) is immediate since pE ≤T E.
(=⇒): Suppose g ≤T A is not dominated by a computable function. Let E = ran(h),

where the function h is defined as follows: h(0) = 0, and for each n, let h(2n + 1) =
h(2n) + g(n) + 1 and let h(2n + 2) = h(2n + 1) + pA(n) + 1. Clearly, E ≡T h ≡T A.
Moreover g(n) ≤ h(2n+1), so that h = pE is not dominted by a computable function. �

40

Proposition 11. If A ≤T ∅′ and A is non-recursive, then A is not computably dominated.

Definition 32. A degree which contains a hyperimmune set is called a hyperimmune
degree. A degree which does not contain a hyperimmune set is called a hyperimmune-free
degree.

Theorem 35 (Miller and Martin, 1968). Every non-zero degree d which is comparable
with 0′ is hyperimmune.

We will see later that hyperimmune-free degrees exist. These are degrees which are
not comparable with 0′ and so they lay outside of the oval between 0 and 0′. In fact, due
to Miller and Martin (1968), there are continuum many of them.

One of the earliest questions in computability theory was Post’s problem of whether
there exists an r.e. degree strictly between 0 and 0′. The answer is positive, but we are
not ready to prove this yet. Knowing that there are other degrees between 0 and 0′, we
can ask how close are they to 0 or 0′. The classification gives us the jump classes, which
we shall look at it in this subsection. This will formalize the notion of sets being close
to 0 or 0′ in terms of their algorithmic information content. Sets whose degree is ‘close’
to 0 have low information content, whereas sets whose degree is close to 0′ have high
information content.

We know that the jump of 0 is 0′. Therefore, for degrees a ≤ 0′, 0′ is the least possible
jump and 0′′ is the greatest possible jump. We note that, 0 is the not only degree whose
jump is 0′.

Definition 33. (i) A set A ≤T ∅′ is called low if A′ ≡T ∅′. It is called high if A′ ≡T ∅′′.

(iii) A set which is neither low nor high is called intermediate.

(iv) A degree is low if it contains a low set, it is high if it contains a high set.

(ii) Let n ≥ 1. We say that A is lown if A(n) ≡T ∅(n). It is called highn if A(n) ≡T ∅(n+1).
(low1 means ‘low’ as defined above.)

Each lown and highn class is closed under Turing reducibility. That is, for lown classes,
we have a proper subset relation

computable sets ⊂ low1 ⊂ low2 ⊂

For a degree a ≥ 0, the range of the jump of a is 0′ ≤ a′ ≤ 0′′. Spector (1956)
constructed a non-recursive ∆0

2 low degree, hence gave the following result about the
behavior of the jump operator.

Theorem 36 (Spector, 1956). There exists a non-zero low degree. Hence, the jump
operator is not one-to-one.

Theorem 37 (Sacks, 1963). There exists a high degree a < 0′.

The next theorem is known in the literature as jump inversion for ∆0
2 degrees, and

concerns the range of the Turing jump.

Theorem 38 (Friedberg, 1957). If b ≥ 0′ then there exist a degree a such that a′ = b.

41

So the jump operator is an onto function. A local version for this theorem for r.e.
degrees is given by Shoenfield (1959).

Theorem 39 (Shoenfield, 1959). If a ∈ Σ0
2 and a ≥ 0′ then there exists a degree b < 0′

such that b′ = a.

But let us now state a nice classification of high sets in terms of domination.

Theorem 40 (Martin’s High Domination Theorem). A set A is high iff there exists a
function f ≤T A which dominates all recursive functions.

6 Construction methods

In this section we give some known results in classical degree theory. We will look at
different construction methods. Although there are many results which use these
construction methods, we aim to give some of the most important results for each
method. We will start with the easiest method and move on to more sophisticated ones
later.

6.1 Finite extension method

One of the earliest questions in computability theory was asked by Post: Does there exist
an r.e. degree strictly between 0 and 0′? Although we will not answer this now, it is first
natural to ask if D is totally ordered. This is answered negatively by Kleene and Post
(1954).

Definition 34. Two degrees a,b are called incomparable if a 6≤ b and b 6≤ a.

We now show that there exist incomparable degrees by building sets A and B such
that A 6≤T B and B 6≤T A. Furthermore, we will show that their degrees are below 0′. The
main idea is that instead of considering a single complicated condition like A 6≤T B, we
shall consider an infinite sequence {Re}e∈N of simpler conditions. We call these conditions
requirements. Here, each Re will be defined as the condition A 6= ΨB

e . At each stage of
the construction we build more of the characteristic sequence of the sets that we want
to construct. For these sets, we respectively define strings σs and τs at stage s. In the
end we define A =

⋃
s∈N σs and B =

⋃
s∈N τs. We use an oracle for ∅′, at each stage of

the construction when choosing σs and τs, and we choose these values so as to ensure
that the next stage condition in our list of requirements is satisfied. We also ensure that
σs ⊂ σs+1 for each s ∈ N. We call this method the finite extension method for it ensures
that σs+1 is a finite extension of σs for each s.

Theorem 41 (Kleene and Post, 1954). There exist incomparable degrees below 0′.

Proof. We construct two sets A and B that are computable in ∅′ such that A 6≤T B
and B 6≤T A. We break these two requirement into infinite sequences of much simpler
conditions and at each stage of the construction we aim to satisfy one. The requirements
are as follows.

R2e : A 6= ΨB
e

R2e+1 : B 6= ΨA
e

42

We use the finite extension method to construct A =
⋃
s∈N σs and B =

⋃
s∈N τs. We

satisfy a single requirement at each stage and once it is satisfied it will remain satisfied
forever. Let σ0 = τ0 = ∅. Suppose that σs and τs are given at stage s+ 1.

If s + 1 = 2e, then we satisfy Re. Let x ∈ N be the first element such that σs(x) is
not defined yet. This means that we have not yet decided whether or not x should be
in A. We decide this now and we use x to witness A 6= ΨB

e . In other words, we satisfy
A(x) 6= ΨB

e (x). That is, we make A on argument x different than ΨB
e . Since we have not

constructed B yet, we do not know if ΨB
e (x) converges, i.e. is defined. However, we do

know that if it converges then there exists some τ ⊂ B such that Ψτ
e (x) is defined (by

the Use Principle). Since τs ⊆ B by construction, if such a τ will exist then it will be
compatible with τs because B extends both. We may also suppose by monotonicity that
τ actually extends τs. In this case, we see if there exists a string τ ⊃ τs such that Ψτ

e (x)
converges.

If there is no such τ then ΨB
e (x) will be undefined and since A(x) will be defined

because of being a total function, it does not matter what we do. In this case the
requirement will be satisfied automatically and we may let σs+1 be the smallest
extension of σs defined on x. Since nothing has to be done on B, we let τs+1 = τs.

If such τ do exist, then ΨB
e (x) will be defined. Then we must define τs+1 in such a way

that B extends τ so that ΨB
e (x) = Ψτ

e (x) by monotonicity. It suffices if we let τs+1 = τ ,
where τ is the first such we found. However, we have to be careful with A. Since ΨB

e (x)
is now defined, we need to make sure that it is different from A(x). So, we let σs+1 be
the smallest extension of σs such that σs+1(x) = 1−ΨB

e (x).
If s+1 = 2e+1, then we just need to interchange the roles of A and B, the construction

is the same.
Now A and B are computable in ∅′ since we use an oracle for ∅′ in constructing A

and B. The only non-recursive step in the construction is where we ask, given x and σ,
if there exists some σ′ extending σ such that Ψσ′

e (x) is defined. We consider all such σ′

extending σ and we compute Ψσ′

e (x) one step at a time in a dovetailing fashion. Hence,
the construction is recursive in ∅′. �

Corollary 4. D is not linearly ordered.

The theorem can be extended to show that there is a set of 2ℵ0 pairwise incomparable
Turing degrees. One can also show that using a slightly different method that for every
nonzero degree a there is a degree b incomparable with a.

Exercise 7. Show that there exists a countably infinite sequence of degrees below 0′

each of which is incomparable with another.

Exercise 8. Prove the relativized version of Theorem 41. That is, show that for any
degree c, there are degrees a and b such that c ≤ a,b and a,b ≤ c′ and that a and b
are incomparable. (Hint: Use joins. For complete solution, see Soare’s book, p. 133)

Exercise 9. A tree is a downward closed set of strings. A weak form of König’s lemma
asserts that every infinite binary tree has an infinite path. Show that this assertion is
true. That is, given such a tree T , construct an infinite path on T using finite extensions.

Minimal pairs using Ψe-splittings

43

A typical problem is to get a degree incomparable with a given one. In the previous
result, we built two sets simultaneously. Now we want to build a set incomparable to a
given set. First we give the following notion.

Definition 35. Two strings σ1 and σ2 are Ψe-splitting if Ψσ1
e (x) ↓6= Ψσ2

e (x) ↓ for some
x. In this case, we say that σ1 and σ2 Ψe-split on x.

Now we show that there exists a pair of degrees with greatest lower bound.

Definition 36. Two degrees a and b form a minimal pair if they are non-zero and their
greatest lower bound is 0, i.e.,

∀c(c ≤ a ∧ c ≤ b⇒ c = 0).

Theorem 42. There exists a minimal pair of degrees. In fact, each non-zero degree is a
part of a minimal pair.

Proof. Let B be a non-recursive set. We want to define a set A =
⋃
s σs such that

R2e : A 6= Ψe

R2〈e,i〉+1 : C = ΨA
e = ΨB

i ⇒ C is recursive

The first requirement ensures that A is non-recursive, while the second requirement
ensures that any set recursive in both A and B is recursive. The first requirement is
satisfed in the same way as we did in the previous theorem, i.e., we diagonalize against
every recursive function.

The second requirement is satisfied by the splitting method. The idea to satisfy
R2〈e,i〉+1 is the following. First we try to make the requirement vacuously true by
having convergent computations such that

ΨA
e (x) 6= ΨB

i (x).

This can be done at a given stage by looking for Ψe-splitting extensions of σs. If they do
exist, say τ1 and τ2, we choose the one that produces a disagreement with ΨB

i on the x
for which the two strings Ψe-split. That is, we let σs+1 = τk, for the τk that disagrees, so
that

B(x) 6= Ψτk
e (x).

In this case the requirement is satisfied vacuously. If such strings do not exist, then let
σs+1 = σs. We still claim that ΨA

e is recursive if it is total. Suppose ΨA
e is total. Then by

the use principle, given any x, there must exist some τ ⊆ A such that Ψτ
e (x) = ΨA

e (x). By
the same principle, we can assume that τ extends σs. But since there are no Ψe-splitting
extending σs, it must be the case that, as long as Ψτ

e (x) converges, the value is unique and
equal to ΨA

e (x). This suggests a recursive method to compute ΨA
e (x): given x, dovetail

the possible computations Ψτ
e (x), for all strings τ ⊆ σs. The first converging one gives

the right value of ΨA
e (x). �

From a topological point of view, the difference between the previous proof, the pure
finite extension method, and the splitting method is that the splitting method relies on
something more than just simple continuity, since we use the fact that when a functional
is constant on an open set, i.e., there is no splitting above a given string, then its value
can be computed recursively.

44

Questions.
1. If ΨA is partial, does it make sense to write ΨA = C? Why/why not?
2. In Theorem 42, what step of the proof determines the the upper bound for the

degree of A?

Coinfinite extension method
We said that (D,≤) is not a (full) lattice for that it does not define a lower semi-lattice.

(D,≤) is a strict upper semi-lattice. That is, the least upper bound of any two degrees a
and b always exists and it is defined as the join of a and b. However, the greatest lower
bound may not always exist. In order to show this we need to consider a phenomenon of
‘exact pairs’ for ideals of partial orders.

Definition 37. Let (P,≤) be a partial order and let a0 ≤ a1 ≤ a2 ≤ . . . be an increasing
sequence of elements of P . A pair of elements (b, c) from P is said to be an exact pair for
this sequence if

(i) an ≤ b, c for all n.

(ii) If d ≤ b, c, then d ≤ an for some n.

Theorem 43. If C1 ≤T C2 ≤T . . . is an increasing sequence, then there are A and B
such that (A,B) is an exact pair for this sequence.

Proof. Given a sequence C0 ≤T C1 ≤T . . . ascending in Turing degree, we define sets A
and B such that

(i) Cn ≤T A,B.

(ii) If C ≤T A,B, then C ≤T Cn for some n.

To ensure these we need to satisfy the following requirements:

Rn : Cn ≤T A,B Ne,i : ΦAe = ΦBi = C =⇒ ∃n(C ≤T Cn).

A finite extension argument will not be sufficient here. We will need what is called a
coinfinite extension argument. In a coinfinite extension argument, at each stage of the
construction we define A and B on infinitely many arguments but at the end of each stage
we also leave them undefined on an infinite number of arguments.

We build A and B, which are divided into columns, by approximations αs and βs.
But instead of taking αs and βs as finite strings, we consider them as matrices. We
consider each αs as the partial function from N×N to N which specifies A on arguments
we have already decided by stage s. In each matrix, finitely many columns are entirely
determined and there is finitely much additional information. Suppose at stage s we work
for Rn. Choose the first column in each of αs, βs which has no specifications as yet. Let
αs+1 (similarly βs+1) be the result of putting Cn into that column of αs (similarly βs)
and leaving the rest of the approximation unchanged. This action is computable in Cn.
Otherwise, suppose at stage s we work to satisfy Ne,i. Ask if there exists some x, some

α ⊇ αs and β ⊇ βs such that Φαe (x) ↓= Φβi (x) ↓ with the domains of α and β being
only finitely larger than those of αs and βs, respectively. If such extensions exist, let
(αs+1, βs+1) be the least such pair of extensions. If no such extensions exist, do nothing.

45

A and B meet the condition that Cn ≤T A,B for all n, because all the Rn requirements
are satisfied. Consider the stage s at which we deal with requirement Ne,i. We may assume
that ΦAe = ΦBi = C as otherwise the requirement is automatically satisfied. We want to
prove C ≤T Cn for some n. Indeed let n be the largest m such that we have coded Cm
into A and B by stage s. To Compute C(x), we use an oracle for D =

⊕s−1
k=0 Ck, and so

is of degree in the ascending sequence (since the degree of D is bounded by the degree
of Ck+1). Certainly D can decide which arguments αs and βs are defined on, and can
compute their values on all such arguments. We find any finite extension α of αs such
that Φαe (x) ↓ (There is one since A ⊇ αs and ΦAe (x) ↓ if it is total). We claim that
Φαe (x) = ΦAe (x) = C(x). Suppose otherwise. Then let β be a finite extention of βs with

β ⊆ B such that Φβi (x) ↓. Since ΦAe = ΦBi , it must be the case that Φαe (x) 6= Φβi (x) which
is impossible by hypothesis. �

Corollary 5. D is not lattice, i.e., it is a strict upper semi-lattice.

Proof. Let 〈Ci〉 be strictly increasing in Turing degree (for example we may let ci+1 = c′i).
Then, by Theorem 43, an exact pair (A,B) exists for this sequence. If there were some
C whose degree is the greatest lower bound of those A and B, then C ≤T A,B but also
C ≤T Cn for some n. Then, C <T Cn+1 ≤T A,B. Hence, C is not the greatest lower
bound of A and B. A contradiction. �

6.2 Simple sets and permitting method

Two basic methods for controlling the degrees of sets we construct are coding and
permitting. Coding is a way of ensuring that a set A we build has degree at least that of
a given set B. As the name implies, it consists of encoding the bits of B into A in a
recoverable way. One simple way to to do this is to build A so that A = B ⊕ C for some
C. Permitting is used to define a set A such that A ≤T B for a given set B. The
simplest version of the permitting method is used when we construct an r.e. set A such
that A ≤T B for a given r.e. set B, where we only define x to be in As if some element
y ≤ x appears in Bs. In this case, we say that B permits x to enter A at stage s. To see
why this guarantees that A ≤T B, observe the following theorem.

Theorem 44. If A and C are r.e. sets such that {As}s∈N and {Cs}s∈N are recursive
enumerations of them, and if for every x

x ∈ As+1 −As =⇒ (∃y ≤ x)(y ∈ Cs+1 − Cs),

then A ≤T C.

Proof. To see if x ∈ A, look at the stages in which some y ≤ x is generated in C:
recursively in C we may determine if y ∈ C, and if so we just have to generate C until y
appears in it. Then x ∈ A if and only if x is generated at one of these stages. �

As an example we will show how to apply the permitting method to construct what
is known as a ‘simple’ set below a given non-recursive r.e. set. Recall that every infinite
recursively enumerable set contains an infinite recursive subset. This was proved by Post
in Theorem 13. Some infinite sets though do not contain any r.e. subset. An infinite set
is called immune if it does not contain any r.e. subset.

46

Earlier we also talked about creative sets (see Definition 16), i.e., sets whose
complement is productive. Creative sets are those which are computably isomorphic to
the halting set K. We now give other examples to incomputable sets. We know that, by
definition, the complement of every creative set contains an infinite r.e. subset. It would
be quite different from K if we could find an incomputable r.e. set whose complement
does not have that property.

Definition 38. An r.e. set S is called simple if

(i) S is infinite

(ii) For every e ∈ N, if We is infinite then We ∩ S 6= ∅.

In other words, a simple set is a recursively enumerable set whose complement is
immune. First we observe that simple sets are incomputable. The item (ii) in the definition
ensures that S is non-recursive.

Proposition 12. If S is simple, then S is not computable.

Proof. Suppose, for a contradiction, that S is simple and computable. Then S is infinite,
by definition, and computable. This means that S is an infinite r.e. set and so it must be
equal to some infinite We. But this contradicts (ii) in the definition. �

Let us now construct a simple set as they do not naturally occur. We construct them
using a primitive version of what we will call later a priority argument.

Theorem 45. There exists a simple set.

Proof. (Version 1—Due to Post, 1944) Let A = ran(ψ) where

ψ(i) = µn > 2i such that n is enumerated into Wi.

Since ψ is partial recursive, A is r.e. If x < 2i is in A, then x = ψ(k) for some k < i.
Hence, |A ∩ [0, 2i)| ≤ i, so A is infinite. Then, by definition, A is simple. �

Proof. (Version 2) We present the following proof in a different way to introduce some
new terminology. Roughly the idea is that for each e we wait for some stage s at which
some x is enumerated into We,s. We then enumerate x into A to make A ∩ We 6= ∅.
However, we have to be a little careful about which x we use if we are to have A infinite.
Of course we can only use computable information in choosing x if we are to end up with
a set A which seems to be recursively enumerable.

We effectively enumerate the members of A at each stage s in order to satisfy the
requirements: For all e ∈ N,

Pe : If We is infinite, then We ∩A 6= ∅.
Ne : |A ∩ {0, 1, . . . , 2e}| ≤ e.

The Pe requirements ensure the condition (ii) of the definition of simple set, whereas
the Ne requirements ensure that A is infinite. For part (i) of the simplicity definition,
notice that if Ne holds then |A ∩ {0, 1, . . . , 2e}| > e. So if Ne holds for infinitely many e,

47

then A must be infinite. Pe is just part (ii) of the definition. So if these requirements are
satisfied, then A is simple.

Formal construction of A:
1. For each as yet unsatisfied Pe, wait for a stage s at which there is a member x ∈We,s

with x > 2e.
2. If such x appears, enumerate x into A, at which stage Pe becomes satisfied.
Note that if no such x appears, then We is finite and the requirement is satisfied

vacaously.
Let us now give the verification. In this case, the verification consists of the observation

that A is r.e., by the effectiveness of the procedure for enumerating the members of A,
and proofs of two simple lemmas.

Lemma 3. Pe is satisfied for each e ∈ N.

Proof. Assume that We is infinite. Let s be the least stage at which we get some x ∈We,s

with x > 2e. By the construction at stage s, Pe is not already satisfied, which means that
it becomes so by step (2) of the construction at stage s via x ∈We ∩A. �

Lemma 4. Ne is satisfied for each e ∈ N.

Proof. Since we can only enumerate a number x into A with x > 2e on behalf of some Wi

with i < e, and for each i at most on such x is enumerated, the lemma follows immediately
and this proves the theorem. �

Exercise 10. Observe that not all non-computable r.e. sets are simple, since given any
non-computable r.e. set A, the set {2n : n ∈ A} is also r.e. and non-computable, yet it is
not simple. Argue why this is the case.

48

6.3 Finite injury priority method

The question as to whether or not there exists an r.e. degree strictly between 0 and 0′

was asked by Emil Post and this was one of the oldest questions in recursion theory. Note
that Theorem 41 does not answer this question. The key ingredient of Theorem 41 is the
use principle. In constructions of this sort, where we build objects to defeat certain oracle
computations, a typical requirement will say something like “the reduction Ψe is not a
witness to A ≤T B.” If we have a converging computation ΨB

e,s(n) 6= A � s(n) and we
“preserve the use” of this by not changing B after stage s on the use of the computation
ΨB
e,s(n) (and similarly preserve A(n)), then we will preserve this disagreement. But this

use corresponds to only a finite portion of B, so we still have all the numbers bigger than
it to meet other requirements. In the finite extension method, this use preservation is
automatic, since once we define B(x) we never redefine it, but in other constructions we
will introduce below, this may not be the case, because we may have occasion to redefine
certain values of B. In that case, to ensure that ΨB

e 6= A, we will have to structure the
construction so that, if ΨB

e is total, then there are n and s such that ΨB
e,s(n) 6= A � s(n)

and, from stage s on, we preserve both A(n) and B � u, where u is the use of the
computation ΨB

e,s(n).
Post’s problem was answered positively by Friedberg (1957) and Muchnik (1956),

where they showed that there exist r.e. sets that are incomparable by using a finite
injury priority argument. This method is somewhat like the finite extension method, but
with backtracking. We are constrained to some sort of effective construction. Unlike in
the finite extension method, when constructing an r.e. set, we cannot ask non-recursive
oracle questions such as “see if there exists a stage s such that...” or “see if there exists
some x such that ϕ(x) ↓”. This is due to the fact that the enumeration of an r.e. set
must be recursive. So our construction must be recursive. Consider Theorem 41 where we
showed there exist two ∆2 sets A and B which are incomparable. If we want to construct
two r.e. sets having the same property, and if we use a ∅′ oracle when enumerating the
elements of A, that merely defines a r.e. set relative to ∅′. To make these sets recursive,
we must then have a recursive construction where the elements go into the sets A and B
but never leave them at subsequent stages of the construction. However, doing so requires
giving up on satisfying our requirements in order.

In the proof of the (Kleene-Post) Theorem 41, it appears that, in satisfying the
requirement R2e+1, we need to know whether or not there is a σ extending A2e+1 such
that Ψσ

e (x) ↓, where x is our chosen witness. Now our idea is to first guess that no such
σ exists, which means that we do nothing for R2e+1 other than keep x out of B. If at
some point we find an appropriate σ, we then make A extend σ and put x into B if
necessary, as in the Kleene-Post construction. The only problem is that putting x into B
may well upset the action of other requirements of the form R2i+2, because such a
requirement might need B to extend some string τ (for the same reason that R2e+1

needs A to extend σ), which may no longer be possible. If we nevertheless put x into B,
we say that we have injured R2i+2. Of course, R2i+2 can now choose a new witness and
start over from scratch, but perhaps another requirement may injure it again later. So
we need to somehow ensure that, for each requirement, there is a stage after which it is
never injured.

To make sure that this is the case, we put a priority ordering on our requirements, by
stating that Rj has stronger priority than Ri if j < i, and allow Rj to injure Ri only if

49

Rj has stronger priority than Ri. Thus R0 is never injured. The requirement R1 may be
injured by the action of R0. However, once this happens R0 will never act again, so if R1

is allowed to start over at this point, it will succeed.
In a finite injury argument, any requirement requires attention only finitely often, and

we argue by induction that each requirement eventually gets an environment wherein it
can be met. As we will later see, there are much more complex infinite injury arguments
where one requirement might injure another infinitely often, but the key there is that the
injury is somehow controlled so that it is still the case that each requirement eventually
gets an environment wherein it can be met.

Theorem 46 (Friedberg-Muchnik Theorem). There exist r.e. sets A and B such that
A 6≤T B and B 6≤T A.

Proof. We build A =
⋃
sAs and B =

⋃
sBs in stages to satisfy the same requirements

as in the proof of Theorem 41. That is, we make A and B r.e. while meeting the following
requirements for all e ∈ N.

R2e : B 6= ΦAe

R2e+1 : A 6= ΦBe

The strategy for a single requirement: We begin by looking at the strategy for a single
requirement R2e. We first pick a witness x to follow R2e. This follower is targeted for
B, and, of course, we initially keep it out of B. We then wait for a stage s such that
ΦAe,s(x) ↓= 0. If such a stage does not occur, then either ΦAe (x) ↑ or ΦAe (x) ↓6= 0 In either

case, since we keep x out of B, we have ΦAe (x) 6= 0 = B(x), and hence R2e is satisfied.
If a stage s as above occurs, then we put x into B and protect As. That is, we try to

ensure that any number entering A from now on is greater than any number seen in the
construction thus far, and hence in particular greater than ΦAe,s(x). If we succeed then, by

the use principle, ΦAe (x) = ΦAe,s(x) = 0 6= B(x), and hence again R2e is satisfied. We refer
to this action of protecting As as imposing restraint on weaker priority requirements.

Note that when we take this action, we might injure a requirement R2i+1 that is trying
to preserve the use of a computation ΦBi (x), since x may be below this use. As explained
above, the priority mechanism will ensure that this can happen only if 2i+ 1 > 2e.

Let us now proceed with the formal construction. We denote by As and Bs, the sets
of elements enumerated into A and B, respectively, by the end of stage s.

Construction.
Stage s = 0. Declare that no requirement currently has a follower.
Stage s+ 1. Say that Rj requires attention at this stage if one of the following holds.
(i) Rj currently has no follower.
(ii) Rj has a follower x and, for some e, either

(a) j = 2e and ΦAe,s(x) ↓= 0 = Bs(x) or

(b) j = 2e+ 1 and ΦBe,s(x) ↓= 0 = As(x).
Find the least j ≤ s with Rj requiring attention (If there is none, then proceed to

the next stage). We suppose that j = 2e, the odd case being symmetric. If R2e has no
follower, then let x be a fresh large number (that is, one larger than all numbers seen in
the construction so far), and appoint x as R2e’s follower.

If R2e has a follower x, then it must be the case that ΦAe,s(x) ↓= 0 = Bs(x). In this
case, enumerate x into B and initialize all Rk with k > 2e by canceling all their followers.

50

In either case, we say that R2e receives attention at stage s.
End of construction.

Verification. We prove by induction that for each j,
(i) Rj receives attention only finitely often.
(ii) Rj is satisfied.
(TO BE COMPLETED...)

We will now prove another application of the priority method as another solution to
Post’s problem. We will show that there exists a non-recursive low r.e. degree.

Theorem 47. There exists a non-recursive r.e. low degree.

Proof. We earlier constructed a simple set. Simple sets are r.e. and non-recursive. We
now construct a simple set which is low degree. We define A by enumerating it as the
construction progresses. This means we cannot use an oracle because the construction
must be carried out effectively.

We first consider the requirements for making A non-recursive. In order to satisfy this,
it is enough to ensure that A is infinite and that:

Pe : We infinite =⇒We ∩A 6= ∅.

These requirements suffice to ensure the non-recursiveness of A because by
complementation theorem, A is recursive iff A and A are r.e.

Now we look to satisfy the lowness property. For this it suffices to consider the following
requirements:

Ne : (∃∞s)
[
ΨAs
e,s(e) ↓

]
=⇒ ΨA

e (e) ↓,

where (∃∞s)R(s) means “there are infinitely many s”. We let A =
⋃
s∈NAs, where As

contains precisely those elements enumerated into A by stage s. Satisfying Ne will give
us a low degree. To see this, let g be a function which is defined in the following way:

g(e, s) =

{
1 if ΨAs

e,s(e) ↓
0 otherwise.

Let g∗(e) = lims→∞ g(e, s). Satisfaction of Ne means that this limit exists. Then, g∗ is
the characteristic function of A′. Also note that since g is computable, g∗ is computable
when given an oracle for ∅′. In order to satisfy Ne, for each e we define a restraint function

re(s) = use(ΨA
e,s(x)) = maximum number used in the computation of ΨA

e,s(x) ↓ (If
the computation is undefined, then let re(s) = 0)

We say that re is injured at stage t > s if we enumerate n < re(s) into A at stage t.
One important property about this function is that if there exists a stage after which
re is not injured, then Ne is satisfied and lims→∞ re(s) is defined. To see this, suppose
that re is not injured at any stage ≥ s0. If there is no stage t ≥ s0 such that ΨAt

e,t(e) ↓,
then Ne will be satisfied and lims→∞ re(s) = 0. Otherwise, let t be the least such stage.

51

Since we do not enumerate in any value less than use(ΨAt
e,t(e)) into A after stage t, this

computation is preserved so that ΨA
e (e) ↓ and re(s) = re(t) for all s ≥ t. To satisfy all

requirements, we give them priorities as N0 > P0 > N1 > P1 > · · · , where N0 is the
highest priority requirement. We agree that a requirement Pe is not allowed to injure
any requirement Ni of a higher priority. Once Pe enumerates some value into A then
this requirement will be satisfied so each Pe can enumerate only one element into A. For
every Ni requirement, note that there are finitely many higher priority requirements Pe.
This means that after some stage Ni will not be injured. Therefore it will be satisfied
and lims→∞ ri(s) will be defined. Then this means that we can satisfy each of the Pe
requirements since We is infinite, then it will have a member greater than the limit values
of all restraint functions of higher priority, and we can enumerate this number into A in
order to satisfy the requirement. We define the construction as follows.

Stage s = 0. Let A0 = ∅.
Stage s+ 1. Given As, we see if there exists least i ≤ s such that Wi,s ∩As = ∅ and

∃s [x ∈Wi,s ∧ x > 2i ∧ (∀e ≤ i) [re(s) < x]] (*)

where, Wi,s is the domain of Ψi,s. If there is such i, then we enumerate the least x
satisfying (∗) into A, i.e. As+1 = As ∪ {x}. If there is no such i we let As+1 = As. This
ends the construction. For verification, the fact that A is infinite follows from the fact that
each requirement Pe enumerates at most one element into A, and if it does enumerate an
x into A then x > 2e. The fact that every requirement is satisfied follows by induction on
the priority ranking of the requirements. �

6.4 Minimal degrees

One natural question is to ask whether the degree structure (D,≤) is dense, i.e., whether
for any two distinct degrees there is another degree strictly between them. Spector (1956)
answers this question negatively in a stronger form. We now give a few definitions and
the theorem. The simplified proof we follow is due to Shoenfield (1966). The non-density
of (D,≤) follows from the existence of ‘minimal’ degrees:

Definition 39. A degree a > 0 is minimal if there does not exist b such that 0 < b < a,
i.e., (∀c)(c ≤ a⇒ c = 0 ∨ c = a).

The existence of a minimal degree seems to require a bit more than finite extension,
where the idea there was to build an increasing sequence of strings σs, and then take their
union

⋃
s∈N σs to define a totality. The same idea can be thought as building a decreasing

sequence of open sets Ts = {X : X ⊃ σs}, and then taking their intersection
⋂
s∈N Ts.

This gives us a chance to work on more general sets like Ts.

Definition 40. A tree T is a function from 2<N to 2<N with the following properties:

(i) If T (σ) is defined and τ ⊂ σ, then T (τ) is defined and T (τ) ⊂ T (σ).

(ii) If one of T (σ ∗ 0) or T (σ ∗ 1) is defined, then both are defined and incompatible
(where σ ∗ 0 denotes σ concatenated with 0).

Remark. When we speak about trees, we generally refer to its range.Hence we
occasionally abuse the notation by treating T as a set of strings. The following
terminology is standard.

52

Definition 41. Let T be a tree.

(i) A string σ is in T if it is in the range of T .

(ii) We say that a set A ⊆ N lies on T if there exist infinitely many σ ⊂ A in T . In that
case, we say that A is a branch on T .

(iii) A leaf of T is a string σ ∈ T such that τ ∈ T for no τ properly extending σ.

(iv) T ∗ is called a subtree of T if every σ ∈ T ∗ is also in T .

(v) We say that T ∗ is the full subtree of T above σ if it consists of all strings on T
extending σ.

We say that a tree T is total if it is total as a function from strings to strings. Otherwise
we say that T is partial. We can think of subtrees for trees as extensions for finite strings.
The tree method consists of building a decreasing sequence of {Tn}n∈N trees, where T0
is the identity tree, i.e. a tree simply consisting of all strings, and such that Tn+1 is a
subtree of Tn. This method is more general because we are allowed to choose Tn+1 to
be any subtree of Tn. The following application of trees uses recursive trees, i.e., partial
recursive trees that are total as functions. First we need to give two lemmas which are
necessary for showing the existence of minimal degrees.

Lemma 5 (Non-Recursiveness Lemma). For any e ∈ N and a (total) recursive tree
T ⊆ 2<N, there is a recursive tree Q ⊂ T such that for every branch A on Q is non-
recursive.

Proof. The claim is that for any A on Q, we will have A 6= Ψe for every e. It is easy to
see that since T (0) and T (1) are incompatible, at least one of them must disagree with
Ψe(x) for some x ∈ N. Let T (i) be the one. Then we let Q be the full subtree of T above
T (i). �

If we want to build a minimal degree we need to construct a set A satisfying the following:

If C ≤T A, then C is either recursive or A ≤T C.

We use the notion of ‘splitting trees’. We already gave the definition of Ψe-splitting in
Definition 35. Now we use this for trees.

Definition 42. A tree T is a Ψe-splitting tree if any two strings in T which are
incompatible are also Ψe-splitting.

Definition 43. A tree T is a Ψe-nonsplitting tree if no pair of strings in T are Ψe-splitting.

Note that a tree which is not Ψe-splitting does not necessarily mean it is
Ψe-nonsplitting.

Lemma 6 (Spector, 1956). For any e ∈ N, recursive tree T and any A on T , if ΨA
e is

total then:

(i) If T is an Ψe-nonsplitting tree, then ΨA
e is recursive.

(ii) If T is Ψe-splitting, then A ≤T ΨA
e .

53

Proof. We first prove (i). Suppose that A lies on T and that ΨA
e is total. Then for any

given x ∈ N we know that ΨA
e (x) is defined and there must be some σ ⊂ A such that

Ψσ
e (x) converges and gives the right value. We may suppose that σ is in T since A is on T .

If T is Ψe-nonsplitting, then to compute ΨA
e (x), it is enough to find any string τ ∈ T such

that Ψτ
e (x) converges. Now Ψσ

e (x) must be equal to Ψτ
e (x) since otherwise they would

Ψe-split. Hence, their value must be equal to ΨA
e (x).

For (ii), suppose that T is Ψe-splitting. We show how to generate increasingly long
segments of A recursively in ΨA

e . Given σ ⊂ A, since A lies on T either σ ∗ 0 or σ ∗ 1 is
contained in A, and we have to decide which one of them is on A. Since T is Ψe-splitting,
there exists some x ∈ N such that Ψσ∗0

e (x) ↓6= Ψσ∗1
e (x) ↓. But then only one of them can

be compatible with ΨA
e (x). Take the one which is compatible, and this determines which

of the two strings is contained in A. �

Lemma 7 (Minimality Lemma). (Spector, 1956) For any e ∈ N and a recursive tree T ,
there is a recursive tree Q ⊂ T such that one of the following holds:

(i) For every A on Q, if ΨA
e is total, then ΨA

e is recursive.

(ii) For every A on Q, if ΨA
e is total, then A ≤T ΨA

e .

Proof. We build Q with either no Ψe-splitting on it, or as a Ψe-splitting tree. If there is
a string σ ∈ T such that there is no Ψe-splitting above σ, then Q has no Ψe-splitting and
Q is the full subtree of T above σ. If every string on T has two Ψe-splitting extensions,
then we can construct a Ψe-splitting subtree Q of T by induction as follows:

Given Q(σ), we let Q(σ ∗ 0) and Q(σ ∗ 1) be two Ψe-splitting extensions of it for the
first such Ψe-splitting strings we found recursively. We will then be able to compute A
from ΨA

e the same way as in the previous lemma. �

Now we can give the final theorem.

Theorem 48 (Spector, 1956). There exists a minimal degree below 0′′.

Proof. The requirements we need to satisfy are as follows.

R2e : A 6= Ψe

R2e+1 : C ≤T A⇒ C is recursive or A ≤T C

We built a decreasing sequence of trees.

Stage 0. Let T0 be the full identity tree.
Stage s = 2e+1. We let T2e+1 be the Q of the Non-Recursiveness Lemma for T = T2e.
Stage s = 2e+ 2. We let T2e+2 be the Q of the Minimality Lemma for T = T2e+1.

If A is on
⋂
s∈N Ts, then A will satisfy the requirements. �

If we analyze the proof we can see that it gives us the existence of a minimal degree
below 0′′. The reason is the question we ask in the Minimality Lemma, whether or not
there is a string σ ∈ T such that there is no Ψe-splitting above σ. This divides into Σ2

and Π2 cases. So the Minimality Lemma uses an oracle for ∅′′. Therefore, the theorem
asserts the existence of a minimal degree below 0′′. Sacks (1961) noticed that we could
use Spencer’s method of splitting trees to prove the existence of a minimal degree below

54

0′. But we can’t use total trees because the oracle question is ∅′′. That won’t give us a
degree below 0′. Instead of using total trees, Sacks realized that we must use partial trees
to prove the existence of a minimal degree below 0′. We will just state his theorem.

Theorem 49 (Sacks, 1961). There exists a minimal degree below 0′.

Corollary 6. D is not dense.

The fact that there exists a minimal degree suffices to show that (D,≤) is not dense.
However, Sacks proved another remarkable result that this is not true for r.e. degrees.

Theorem 50 (Sacks’ Density Theorem, 1964). Let a and b be two recursively enumerable
degrees. Then there exists another recursively enumerable degree c such that a < c < b.

Corollary 7. Recursively enumerable degrees cannot be minimal.

Here are some more interesting results.

Theorem 51 (Yates, 1970). Below every non-zero r.e. degree there exists a minimal
degree.

Theorem 52 (Cooper, 1972). No high degree can be minimal.

Note that the minimal degree proof can be relativized to any set so that we get minimal
degrees above that set. That is, given any non-recursive set of degree a, we can build a
set with degree b > a such that there is no set of degree c strictly between a and b. This
gives us the following notion.

Definition 44. A non-zero degree a is a minimal cover for a degree b < a if there is no
degree c such that b < c < a.

When we relativize the minimal degree construction, relative to a set A, we get a
minimal cover for the degree of A, i.e., a set B strictly above A such that there is nothing
inbetween. Hence, every degree has a minimal cover. But not every degree is a minimal
cover.

7 Π0
1 Classes

In this section we introduce Π0
1 classes, which are also known as effectively closed subsets

of Cantor space. We give some terminology using recursive trees, and then introduce
the basic properties of Π0

1 classes including basis and anti-basis results. We then give an
alternative characterization of Π0

1 classes in terms of complete consistent extensions of
axiomatizable theories, such as Peano Arithmetic. Finally we discuss some variants of Π0

1

classes.

7.1 Cantor Space

So far we have worked with subsets of N. Now we will work with subsets of 2N. The set
2N with a natural topology is called Cantor space. Taking the ordinal notation 2 = {0, 1},
without loss of generality, 2N denotes the set of characteristic sequences of all subsets of
N.

55

From now on we simply define tree T as a downward closed set of finite strings, i.e.,
if σ ∈ T and τ ⊆ σ then τ ∈ T . Note that this definition is different than the one given
earlier, as it was defined as a function, but they’re not very different if we only take the
range of the function in the earlier definition. We say that a tree T is recursive if it is
recursive as a set, i.e., for any string σ, we can effectively decide whether or not σ ∈ T .

Definition 45. (i) Let T ⊆ 2<N be a tree. The set of infinite paths through T is

[T] = {A : ∀n(A � n ∈ T)}.

(ii) A class P ⊆ 2N is called a Π0
1 class if there exists a recursive tree T such that

P = [T].

Π0
1 classes appear naturally in mathematics. In logic, for example, if A and B be

disjoint r.e. sets, then the collection of separating sets {X : X ⊇ A ∧X ∩B = ∅} is a Π0
1

class. Another example of a Π0
1 class is the class of (Gödel codes of) complete consistent

extensions of a theory.
Effectively closed sets arise naturally in other branches of recursive mathematics. In

many problems associated with mathematical structures, such as the problem of finding
a 4-coloring of a planar graph, the family of solutions may be viewed as a closed set
under some natural topology. Thus for a computable structure, the set of solutions may
be viewed as a Π0

1 class.
For example, the set of 4-colorings of a given computable graph G may be represented

as a subclass of {0, 1, 2, 3}N and is therefore computably bounded. Then we may apply
the basis results we surveyed, for example, and conclude that if G has a 4-coloring, then
it has a 4-coloring of r.e. degree.

Since we are working in Cantor space, we shall mention its compactness property. This
is usually provided by König’s Lemma.

Lemma 8 (König’s Lemma). If T is a finitely branching infinite tree, then T has an
infinite path.

Proof. Suppose we are given a finitely branching infinite tree T . We define a path A =⋃
n∈N σn on T by induction on n. First we may define σ0 to be the empty string, i.e.,

the root of T . Given σn ∈ T for which there are infinitely many extensions in T , we
define σn+1 to be an immediate successor of σn in T such that σn+1 has infinitely many
extensions in T . Such σn+1 exists because σn has infinitely many extensions in T , but
only finitely many immediate successors since T is finitely branching. Hence, at least one
of the immediate successors must have infinitely many extensions in T . �

Another version of compactness may be given in the form of that if {Te} is a sequence
of non-empty closed sets such that Te ⊇ Te+1, then

⋃
e Te is a non-empty closed set. We

shall now give some notation for trees before we look at the basic properties of Π0
1 classes.

Definition 46. Let T ⊆ 2<N be a tree.

(i) For any given σ ∈ T , we let Tσ be the subtree of nodes compatible with σ and be
defined as

56

Tσ = {τ ∈ T : σ is compatible with τ}.

(ii) A path A ∈ [T] is said to be isolated if there exists a string σ such that [Tσ] = {A}.
Otherwise A is called a limit point.

Note that when σ isolates A, there are no infinite extensions of σ in T other than A.

Definition 47. We say that σ ∈ T is infinitely extendible in T if there exists some A ⊃ σ
such that A ∈ [T]. Given some tree T , the subtree of infinitely extendible nodes of T is
defined as

T ext = {σ ∈ T : ∃A ⊃ σ such that A ∈ [T]}.

The tree T is infinitely extendible if T = T ext.

The following theorem will become useful when we introduce Π0
1 classes that are

countable.

Theorem 53. Let T be a recursive tree. If A ∈ [T] is isolated, then A is recursive.

Proof. Let T be a computable tree and let A be a path on T . Assume that A ∈ [T]
isolated. Then there is a string σ ⊆ A such that every path above σ is finite except A.
To compute the path A, we need to define the value of A(n), that is, the n-th bit of the
characteristic sequence of A. This is done by computably defining each next bit of A, in
other words, define A � n for each n ∈ N, on T . We use König’s lemma by induction
on n. That is, for any n > |σ|, there exists a unique τ ⊇ σ of length n such that there
is an infinite extension above τ in T . To compute A � n for n > |σ|, we find m ≥ n
such that exactly one τ ⊇ σ of length n has an extension of length m in T . Then, we let
A � n = τ . By the compactness of Cantor space (which is ensured by König’s lemma),
since we compute every finite initial segment of A, we can compute the path A on T . �

Corollary 8. Let P be a finite Π0
1 class. Then every member of P is recursive.

Proof. Let T be a recursive tree such that P = [T] and that T has only finitely many
paths. Therefore, every member of T is isolated. Hence, they are all recursive. �

7.2 Basis and antibasis theorems

In this subsection we give some basis and antibasis results about members of Π0
1 classes.

Definition 48. Let B be a set of Turing degrees. We say that B is a basis for Π0
1 classes

if every non-empty Π0
1 class has a member of degree in B. Otherwise we call B a nonbasis.

We call B an antibasis if whenever a Π0
1 class contains a member of every degree in B,

then it necessarily contains a member of all Turing degrees.

So a typical basis result asserts that every non-empty Π0
1 class contains a member of

a particular kind. The first basis result is due to Kreisel (1951).

Theorem 54 (Kreisel’s basis theorem). Let P = [T] be a non-empty Π0
1 class for some

recursive tree T . Then, there exists a set A ∈ [T] such that A ≤T ∅′.

57

Proof. Let T be an infinite recursive tree such that P = [T]. Given σn ∈ T , we have to
decide whether to choose σn+1 as σn ∗ 0 or σn ∗ 1. We see if for m > n there exists some
τ ∈ T such that |τ | = m and τ ⊇ σn ∗ 0. If so, we let σn+1 = σn ∗ 0. Otherwise, we let
σn+1 = σn ∗ 1. We then let A =

⋃
n∈N σn. Since the quantifier on τ is bounded, because

there are only finitely many strings of length m, and T is recursive, the question is merely
Π0

1. Thus it can be answered recursively in ∅′. Then, A ≤T ∅′. �

Now we ask if every non-empty Π0
1 class contains a member of r.e. degree. This is

answered positively due to following theorem.

Theorem 55. Every non-empty Π0
1 class P = [T], for some recursive tree T , contains

a member of r.e. degree. In fact, the leftmost path of T (lexicographically the least <L
member of [T]) is of r.e. degree.

Proof. Given a recursive tree T , consider lexicographically its leftmost branch A. If

σ ∈ B ⇔ σ ∈ T ∧ σ <L A

then A ≡T B. Moreover, B is r.e. because if σ ∈ T is in B then we discover it by generating
all strings of T of length up to n, for n large enough. �

However, due to Jockusch and Soare (1972), not every Π0
1 class contains a member of

incomplete r.e. degree < 0′. That is, the set of incomplete r.e. degrees is not a basis for
Π0

1 classes.

Definition 49. A Π0
1 class is called special if it does not contain any recursive member.

Theorem 56 (Jockusch and Soare, 1972). There exists a special non-empty Π0
1 class.

Proof. First we prove the following lemma: If A and B are two disjoint r.e. sets, then
the class of separating sets is a Π0

1 class. To prove this define a recursive tree T with [T]
the class of separating sets of A and B. For σ with |σ| = s, put σ in T if ∀x < |σ| we have

x ∈ As =⇒ σ(x) = 1 ∧ x ∈ Bs =⇒ σ(x) = 0.

Hence, f ∈ [T] if and only if

(∀x)[x ∈ A =⇒ f(x) = 1 ∧ x ∈ B =⇒ f(x) = 0].

This proves the lemma.
Now we prove the theorem. For this, let A = {x : ϕx(x) = 1} and B = {x : ϕx(x) = 0}

be two disjoint r.e. sets which are recursively inseparable. Then the class of separating
sets for A and B defines a Π0

1 class with no computable member. �

If T ⊆ 2<N is a recursive tree such that [T] is special, then T ext must be a perfect
tree in the sense that every σ ∈ T ext admits incompatible extensions in T ext because any
isolated path would be recursive. Therefore, if P is a special Π0

1 class, then it has 2ℵ0

members. Hence, any countable Π0
1 class contains an isolated (and so recursive) member.

A well known result which extends Kreisel’s basis theorem is the low basis theorem by
Jockusch and Soare (1972), saying that every non-empty Π0

1 class contains a member of
low degree, i.e., a member of degree a such that a′ = 0′.

58

Theorem 57 (Low basis theorem). Every non-empty Π0
1 class contains a member of low

degree.

Proof. Let P be a non-empty Π0
1 class such that P = [T] for a recursive tree T . We build

a set A on T such that A′ ≤T ∅′.
We let T0 = T . Given Te, in order to decide whether e ∈ A′ we consider the following:

Ue = {σ ∈ Te : Ψσ
e,|σ|(e) ↑}.

Now Ue is a downward closed set of strings and can be finite or infinite.

1. If it is infinite, we let Te+1 = Ue. In this case e 6∈ A′ for any A on Te+1.

2. If it is finite, we let Te+1 = Te. Now in this case we have that e ∈ A′ because Ψσ
e (e) ↑

for only finitely many strings on Te+1. Then the computation must converge for
sufficiently large strings.

Note that whenever A ∈
⋂
e∈N Te we have that A′ ≤T ∅′. The reason why this is so is

because we can decide on the case distinction using an oracle for ∅′ since |Ue| is finite if
and only if ∃n such that ∀σ of length n, σ 6∈ Ue. The universal quantifier is bounded, so
the expression becomes a Σ1 statement, hence computable in ∅′. �

Corollary 9. There exists a complete and consistent extension of PA which is of low
degree.

Proof. The corollary follows from the fact that any axiomatizable theory, particularly
PA, can be viewed as a Π0

1 class together with the low basis theorem. �

Definition 50. A set A is of hyperimmune-free degree if for every function f such that
f ≤T A, there exists a computable function g which majorizes f , i.e. g(n) ≥ f(n) for all
n ∈ N.

Let us discuss what this intuitively means. If A is of hyperimmune-free degree then
A has no ability to compute fast growing functions. This means that for every f ≤T A
there is a recursive function g which grows at least as quickly as f . It is clear that 0
is a hyperimmune-free degree. However, the minimal degree construction given earlier
can be modified to get a minimal degree which is hyperimmune-free. A way to construct
hyperimmune-free degrees would be as follows. Suppose that f = Ψi(A) for some i ∈ N,
and if A is on a total recursive i-splitting tree then we have that Ψi(σ;n) ↓, for every
σ of level n + 1 in the tree by induction on n. Since the tree is total as a function we
can compute all computations of the form Ψi(σ;n) for any σ of level n+ 1. Then we can
define g(n) to be larger than what Ψi(σ;n) gives as an output for all σ of level n+ 1. The
idea of the proof of the next theorem is similar to this argument and that of low basis
theorem.

Theorem 58. Every non-empty Π0
1 class contains a member which is of hyperimmune-

free degree.

Proof. Let P be a non-empty Π0
1 class such that P = [T] for some recursive tree T .

We construct a set A of hyperimmune-free degree such that A ∈ [T] and that whenever
Ψe(A) is total, it is majorized by a recursive function.

We let T0 = T . Given Te, we consider the following set.

59

U〈e,n〉 = {σ : σ ∈ Te and Ψe(σ;n) ↑}.

As in the previous theorem, there are two cases we need to look at. Now U〈e,n〉 is
again a downward closed set of strings and can be finite or infinite.

If it is infinite for some n ∈ N, we let Te+1 = U〈e,n〉 for that n. Now in this case for
any A on Te+1, Ψe(A) will be partial so the requirement is automatically satisfied.

If however U〈e,n〉 is finite for all n, then we let Te+1 = Te. Then in this case, for any
A on Te+1 we find a recursive function that majorizes Ψe(A). For this, we look for a level
m in a computable fashion such that Ψe(σ;n) is defined for all σ of level m. We finally
let g(n) be greater than the value of Ψe(σ;n) for all σ of level m. �

Recall that two degrees a and b form a minimal pair if they are non-recursive and their
greatest lower bound is 0, i.e. ∀c(c ≤ a ∧ c ≤ b⇒ c = 0). The following result, which we
shall call the capping basis theorem (or minimal pair basis theorem), was proved by
Jockusch and Soare (1972).

Theorem 59 (Capping basis, 1972). Every non-empty Π0
1 class contains members of

degrees a,b such that a ∧ b = 0.

We observe that the cupping analogue of this is not true. In fact, we have something
stronger as proved in Çevik (2021).

Theorem 60 (Çevik, 2021). There exists a special non-empty Π0
1 class P such that

∅′ 6≤T A⊕B for any A ∈ P, B ∈ P.

Another non-basis result for Π0
1 classes concerns the join property of degrees.

Definition 51. A degree a satisfies the join property if for all non-zero b < a there exists
c < a such that b ∨ c = a.

Theorem 61 (Çevik, 2021). There exists a non-empty special Π0
1 class such that no

member satisfies the join property.

Next, we give some results regarding what kind of members of degrees that Π0
1 cannot

contain without having members of every degree. The following result was shown by Kent
and Lewis (2010).

Theorem 62 (Low Antibasis Theorem). If a Π0
1 class contains a member of every low

degree, then it contains a member of every degree.

In Çevik (2013) the low antibasis theorem was in fact extended to every jump level
below 0′. This gives us an idea about the relationship between the degrees of members of
Π0

1 classes and the Turing jump.

Theorem 63 (Çevik, 2013). If a Π0
1 class contains a member of every degree in any

non-recursive jump class, then it contains a member of every degree.

Corollary 10 (High antibasis theorem). If a Π0
1 class contains a member of every high

degree, then it contains a member of every degree.

A natural consequence of the theorem is the high antibasis theorem of course.

Corollary 11 (High Antibasis Theorem). The class of high degrees is an antibasis for
Π0

1 classes.

60

A more general corollary can be given as follows.

Corollary 12. If a Π0
1 class contains members of every degree of any non-recursive jump

level below 0′, then it contains members of every degree.

We finish with an interesting result by Groszek and Slaman (1997).

Theorem 64. There exists a non-empty Π0
1 class such that every member computes a

set which is of minimal degree.

61

